Skip to main content
Log in

A new insight into rapid oxidation of alloy 925 contaminated by oxide powder

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Rapid oxidation takes place both in the laboratory and in industrial conditions when alloy 925 is contaminated by oxide powder, and the oxidation rate is much higher than normal. Herein, the rapid oxidation behavior and mechanism of alloy 925 were investigated by a series of comparison tests at 1160 °C. It is found that the oxide powder produced during the oxidation process is mainly composed of NiCr2O4 spinel, accompanied by NiO and NiMoO4. The oxide powder plays a triggering role in the rapid oxidation of alloy 925, as NiO has a strong affinity with O. A composition adjustment experiment of alloy 925 shows that rapid oxidation is the synergetic effect of Mo and Cu in the alloy. Mo and Cu easily combine to form low melting point eutectics. The formation and volatilization of MoO3 oxide can destroy the completeness of the protective oxide layer. The MoO3 flux can dissolve protective Cr2O3 and prevent the repair of the oxide layer and also promote the formation of nonprotective and easy-spall NiCr2O4 spinel. The synergetic effect of Cu and Mo in accelerating oxidation should be considered in any nickel-based alloy with a high content of Cu and Mo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haeberle T, Kovach PJ. Development of large nickel-base alloy 925 composite block trees for extreme corrosion, fire-resistant applications on offshore platforms. In: SPE Production Engineering. 1987; 574.

  2. Ganesan P, Clatworthy E, Harris J. Development of a time-temperature transformation diagram for alloy 925. Corrosion. 1988;44(11):827.

    CAS  Google Scholar 

  3. Montagnon J. Nickel–chrome–iron based alloy composition. US Patent, 6004408. 1999.

  4. Mannan S, Patel S. A new Ni-base superalloy for oil and gas applications, superalloy 2008, Pennsylvania, The United States. 2008; 31.

  5. Tomio A, Sagara M, Doi T, Amaya H, Otsuka N, Kudo T. Role of alloyed molybdenum on corrosion resistance of austenitic Ni–Cr–Mo–Fe alloys in H2S–Cl–environments. Corros Sci. 2015;98:391.

    CAS  Google Scholar 

  6. Li H, Zhang B, Jiang Z, Zhang S, Feng H, Han P, Dong N, Zhang W, Li G, Fan G. A new insight into high-temperature oxidation mechanism of super-austenitic stainless steel S32654 in air. J Alloys Compd. 2016;686:326.

    CAS  Google Scholar 

  7. Yun DW, Seo SM, Jeong HW, Yoo YS. Effect of refractory elements and Al on the high temperature oxidation of Ni-base superalloys and modelling of their oxidation resistance. J Alloys Compd. 2017;710:8.

    CAS  Google Scholar 

  8. Yun DW, Seo S, Jeong H, Kim I, Yoo Y. Modelling high temperature oxidation behaviour of Ni–Cr–W–Mo alloys with Bayesian neural network. J Alloys Compd. 2014;587:105.

    CAS  Google Scholar 

  9. Hashizume R, Yoshinari A, Kiyono T, Murata Y, Morinaga M. Development of Ni-based single crystal superalloys for power-generation gas turbines. Mater High Temp. 2007;24(3):163.

    CAS  Google Scholar 

  10. Qin L, Pei Y, Li S, Zhao X, Gong S, Xu H. Role of volatilization of molybdenum oxides during the cyclic oxidation of high-Mo containing Ni-based single crystal superalloys. Corros Sci. 2017;129:192.

    CAS  Google Scholar 

  11. Yang Q, Xiong W, Li S, Dai H, Li J. Characterization of oxide scales to evaluate high temperature oxidation behavior of Ti (C, N)-based cermets in static air. J Alloys Compd. 2010;506(1):461.

    CAS  Google Scholar 

  12. Bai C-Y. Effects of electrical discharge surface modification of superalloy Haynes 230 with aluminum and molybdenum on oxidation behavior. Corros Sci. 2007;49(10):3889.

    CAS  Google Scholar 

  13. Espevik S, Rapp R, Daniel P, Hirth J. Oxidation of Ni–Cr–W ternary alloys. Oxid Met. 1980;14(2):85.

    CAS  Google Scholar 

  14. Mathieu H, Landolt D. An investigation of thin oxide films thermally grown in situ on Fe-24Cr and Fe-24Cr-11Mo by auger electron spectroscopy and X-ray photoelectron spectroscopy. Corros Sci. 1986;26(7):547.

    CAS  Google Scholar 

  15. Montemor M, Simões A, Ferreira M, Belo MDC. The role of Mo in the chemical composition and semiconductive behaviour of oxide films formed on stainless steels. Corros Sci. 1999;41(1):17.

    CAS  Google Scholar 

  16. El-Dahshan M, Whttel D, Stringer J. Hot corrosion of nickel-base alloys containing aluminium and molybdenum. Mater Corros. 1974;25(12):910.

    CAS  Google Scholar 

  17. Shi ZX, Yan XF, Duan CH. Precipitation behavior and mechanism of sigma phase in alloy 925. In: Proceedings of the 9th international symposium on superalloy 718 & derivatives: energy, aerospace, and industrial applications, Pittsburgh. 2018; 735.

  18. Yamaguchi N, Kakeyama T, Yoshioka T, Ohashi O. Effect of the third elements on high temperature oxidation resistance of TiAl3 intermetallic compounds. Mater Trans. 2002;43(12):3211.

    CAS  Google Scholar 

  19. Tang C, Bi ZN, Du JH, Zhang J. Influence of Heat Treatments on Microstructure and Mechanical Properties of Oilfield used Alloy 925, Energy Materials. Cham: Springer; 2014. 679.

    Google Scholar 

  20. San S, Puckett B. Physical Metallurgy of Alloys 718, 725, 725HS, 925 for Service in Aggressive Corrosive Environments. San Diego, CA: CORROSION 2003; 2003. 1.

    Google Scholar 

  21. Zhao Z, Li JY, Dong JX, Yao ZH, Zhang MC. Oxidation behavior during high temperature homogenization treatment of cast Ni–Fe based corrosion resistant 925 alloy. J Chin Soc Corros Prot. 2017;37(1):1.

    Google Scholar 

  22. Xu C, Yao ZH, Dong JX, Jiang YK. Mechanism of high-temperature oxidation effects in fatigue crack propagation and fracture mode for FGH97 superalloy. Rare Met. 2019;38(7):642.

    CAS  Google Scholar 

  23. Jiang H, Dong JX, Zhang MC, Yao ZH. Hot corrosion behavior and mechanism of FGH96 P/M superalloy in molten NaCl–Na2SO4 salts. Rare Met. 2019;38(2):173.

    CAS  Google Scholar 

  24. Whittle D. High temperature oxidation of superalloys. In: Proceedings of the high temperature alloys for gas turbines, Liege, Belgium. 1978; 109.

  25. Ergang R. Deposition and corrosion in gas turbines. Von A. B. Hart und A. J. B. Cutler. Applied Science Publishers Ltd. London 1973. Mater Corros. 1974;25(11):886.

    Google Scholar 

  26. Stott F, Wood G, Stringer J. The influence of alloying elements on the development and maintenance of protective scales. Oxid Met. 1995;44(1–2):113.

    CAS  Google Scholar 

  27. Tedmon C. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe–Cr alloys. J Electrochem Soc. 1966;113(8):766.

    CAS  Google Scholar 

  28. Jo TS, Kim SH, Kim DG, Park JY, Do Kim Y. Thermal degradation behavior of Inconel 617 alloy. Met Mater Int. 2008;14(6):739.

    CAS  Google Scholar 

  29. Liu C, Ma J, Sun X. Oxidation behavior of a single-crystal Ni-base superalloy between 900 and 1000 °C in air. J Alloys Compd. 2010;491(1):522.

    CAS  Google Scholar 

  30. Brenner S. Oxidation of iron-molybdenum and nickel-molybdenum alloys. J Electrochem Soc. 1955;102(1):7.

    CAS  Google Scholar 

  31. Carrasco JG, Adeva P, Aballe M. The role of microstructure on oxidation of Ni–Cr–Al base alloys at 1023 and 1123 K in air. Oxid Met. 1990;33(1–2):1.

    Google Scholar 

  32. Yun DW, Seo HS, Jun JH, Lee JM, Kim KY. Molybdenum effect on oxidation resistance and electric conduction of ferritic stainless steel for SOFC interconnect. Int J Hydrogen Energy. 2012;37(13):10328.

    CAS  Google Scholar 

  33. Brewster G, Edmonds I, Gray S. The effect of volatilisation of refractory metal oxides on the cyclic oxidation of Ni-base superalloys. Oxid Met. 2014;81(3–4):345.

    CAS  Google Scholar 

  34. Teed PL. The science and technology of tungsten, tantalum, molybdenum, niobium and their alloys. Aeronaut J. 1964;68(645):588.

    Google Scholar 

  35. Safikhani A, Esmailian M, Salmani MR, Aminfard M. Effect of Ni–Mo addition on cyclic and isothermal oxidation resistance and electrical behavior of ferritic stainless steel for SOFCs interconnect. Int J Hydrogen Energy. 2014;39(21):11210.

    CAS  Google Scholar 

  36. Brenner S. Catastrophic oxidation of some molybdenum-containing alloys. J Electrochem Soc. 1955;102(1):16.

    CAS  Google Scholar 

  37. Halvarsson M, Tang JE, Asteman H, Svensson J-E, Johansson L-G. Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600 °C. Corros Sci. 2006;48(8):2014.

    CAS  Google Scholar 

  38. Pang Q, Wu G, Xiu Z, Jiang L, Sun D. Microstructure, oxidation resistance and high-temperature strength of a new class of 3D open-cell nickel-based foams. Mater Charact. 2012;70:125.

    CAS  Google Scholar 

  39. Robino C. Representation of mixed reactive gases on free energy (Ellingharn-Richardson) diagrams. Metall Mater Trans B. 1996;27(1):65.

    Google Scholar 

  40. Zheng L, Zhang M, Dong J. Oxidation behavior and mechanism of powder metallurgy Rene95 nickel based superalloy between 800 and 1000 °C. Appl Surf Sci. 2010;256(24):7510.

    CAS  Google Scholar 

  41. Huang XX. LI JS, Hu R, Bai GH, Fu HZ, evolution of oxidation in Ni–Cr–W alloy at 1100 °C. Rare Met Mater Eng. 2010;39(11):1908.

    CAS  Google Scholar 

  42. Jia Q, Gu D. Selective laser melting additive manufactured Inconel 718 superalloy parts: high-temperature oxidation property and its mechanisms. Opt Laser Technol. 2014;62:161.

    CAS  Google Scholar 

  43. Yang SW, Wang JY, Sun J, Yang HJ, Wu XF. High temperature oxidation of the DZ4 directionally-solidified superalloy. J Harbin Eng Univ. 2008;29(1):95.

    CAS  Google Scholar 

  44. Meijering J, Rathenau G. Rapid oxidation of metals and alloys in the presence of molybdenum trioxide. Nature. 1950;165(4189):240.

    CAS  Google Scholar 

  45. Belousov V, Klimashin A. Catastrophic oxidation of copper: a brief review. Metall Mater Trans A. 2012;43(10):3715.

    CAS  Google Scholar 

  46. Belousov V. Kinetics and mechanism of catastrophic copper oxidation. Prot Met. 1994;30(6):599.

    CAS  Google Scholar 

  47. Belousov V. The kinetics and mechanism of catastrophic oxidation of metals. Oxid Met. 1994;42(5–6):511.

    CAS  Google Scholar 

  48. Klimashin A, Belousov V. Accelerated corrosion of MoO3-deposited copper. Corros Sci. 2011;53(10):3150.

    CAS  Google Scholar 

  49. Belousov V. The “catastrophic” oxidation of metals. Russ J Phys Chem A Focus Chem. 2008;82(13):2243.

    CAS  Google Scholar 

  50. Stott F, Wei F. Comparison of the effects of small additions of silicon or aluminum on the oxidation of iron-chromium alloys. Oxid Met. 1989;31(5):369.

    CAS  Google Scholar 

  51. Li B, Gleeson B. Effects of silicon on the oxidation behavior of Ni-base chromia-forming alloys. Oxid Met. 2006;65(1–2):101.

    CAS  Google Scholar 

  52. Truman J, Pirt K. The influence of the content of certain incidental elements on the cyclic oxidation resistance of 12–13% chromium steels. Corros Sci. 1976;16(2):103.

    CAS  Google Scholar 

  53. Xu WY, Zhang LC, Zheng SH, Wang JH, Li Z, Zhang GQ. Microstructure of cast superalloy K4169 with different HIP atmosphere. Chin J Rare Met. 2020;44(4):363.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51701011) and the Fundamental Research Funds for the Central Universities (No. FRF-TP-17-002A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Xin Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Dong, JX., Zhang, MC. et al. A new insight into rapid oxidation of alloy 925 contaminated by oxide powder. Rare Met. 40, 1872–1880 (2021). https://doi.org/10.1007/s12598-020-01504-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01504-3

Keywords

Navigation