Skip to main content

Advertisement

Log in

Microstructure, mechanical and corrosion properties of Mg–Zn–Nd alloy with different accumulative area reduction after room-temperature drawing

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Good mechanical properties and corrosion resistance are the key factors for the application of biodegradable magnesium alloy wires as new medical implant materials. This study is aimed at investigating the influence of microstructural evolution on mechanical and corrosion properties of Mg–2Zn–0.5Nd alloy (ZN20) during room-temperature drawing. The decreases in the cross-sectional area of ZN20 alloy during drawing refined the grains from 10 to 5 μm under the influence of cold deformation, the basal texture was rotated around radius direction, the basal texture became dominant, and the texture transformed from drawing direction (DD)//\(<2{\bar{1}}{\bar{1}}1>\) to a point between \(<2{\bar{1}}{\bar{1}}1>\) and \(<2{\bar{1}}{\bar{1}}0>\) parallel to DD. The ultimate tensile strength of the wire was increased by 44.7% compared with that of the extruded alloy due to grain boundary strengthening, hard orientation and work hardening during drawing process, while the elongation was decreased by 85% under the influence of work hardening. The corrosion resistance of the alloy was improved after drawing due to grain refinement, while it was sensitive to prismatic texture.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Asgari M, Hang R, Wang C, Yu Z, Li Z, Xiao Y. Biodegradable metallic wires in dental and orthopedic applications: a review. Metals. 2018;8(4):212.

    Article  Google Scholar 

  2. Wu H, Zhao C, Ni J, Zhang S, Liu J, Yan J, Chen Y, Zhang X. Research of a novel biodegradable surgical staple made of high purity magnesium. Bioact Mater. 2016;1:122.

    Article  Google Scholar 

  3. Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6(5):1680.

    Article  CAS  Google Scholar 

  4. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomater. 2006;27(9):1728.

    Article  CAS  Google Scholar 

  5. Chen YJ, Xu ZG, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10(11):4561.

    Article  CAS  Google Scholar 

  6. Wang WD, Wan P, Liu C, Tan LL, Li WR, Li LG, Yang K. Degradation and biological properties of Ca–P contained micro-arc oxidation self-sealing coating on pure magnesium for bone fixation. Regener Biomater. 2015;2(2):107.

    Article  CAS  Google Scholar 

  7. Chen J, Tan L, Yu X, Etim I, Ibrahim M, Yang K. Mechanical properties of magnesium alloys for medical application: a review. J Mech Behav Biomed Mater. 2018;87:68.

    Article  CAS  Google Scholar 

  8. Birbilis N, Zhang MX, Estrin Y. Surface grain size effects on the corrosion of magnesium. Key Eng Mater. 2008;384:229.

    Article  Google Scholar 

  9. Birbilis N, Estrin Y. Corrosion of pure Mg as a function of grain size and processing route. Adv Eng Mater. 2008;10(6):579.

    Article  Google Scholar 

  10. Orlov D, Ralston KD, Birbilis N, Estrin Y. Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Mater. 2011;59(15):6176.

    Article  CAS  Google Scholar 

  11. Mccall CR, Hill MA, Lillard RS. Crystallographic pitting in magnesium single crystals. Corros Eng Sci Technol. 2005;40(4):337.

    Article  CAS  Google Scholar 

  12. Uan JY, Li CF, Yu BL. Characterization and improvement in the corrosion performance of a hot-chamber diecast Mg alloy thin plate by the removal of interdendritic phases at the die chill layer. Metall Mater Trans A. 2008;39(3):703.

    Article  Google Scholar 

  13. Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomater. 2008;29(10):1329.

    Article  CAS  Google Scholar 

  14. Wang W, Han J, Yang X, Li M, Yang K. Novel biocompatible magnesium alloys design with nutrient alloying elements Si, Ca and Sr: structure and properties characterization. Mater Sci Eng B. 2016;214:26.

    Article  CAS  Google Scholar 

  15. Chen J, Tan L, Yu X, Yang K. Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg–2Zn–xGd–0.5Zr alloys. J Mater Sci Technol. 2019;35(4):503.

    Article  Google Scholar 

  16. Mabuchi M, Kubota K, Higashi K. New recycling process by extrusion for machined chips of AZ91 magnesium and mechanical-properties of extruded bars. Mater Trans JIM. 1995;36(10):1249.

    Article  CAS  Google Scholar 

  17. Kim WJ, Chung SW, Chung CS, Kum D. Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures. Acta Mater. 2001;49(16):3337.

    Article  CAS  Google Scholar 

  18. Yamashita A, Horita Z, Langdon TG. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater Sci Eng A Struct. 2001;300(1–2):142.

    Article  Google Scholar 

  19. Zhu S, Wang L, Liu Q, Guan S. The microstructure and properties of cyclic extrusion compression treated Mg–Zn–Y–Nd alloy for vascular stent application. J Mech Behav Biomed. 2012;8(2):1.

    Google Scholar 

  20. Homma T, Kunito N, Kamado S. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr Mater. 2009;61(6):644.

    Article  CAS  Google Scholar 

  21. Bohlen J, Yi S, Letzig D, Kainer KU. Effect of rare earth elements on the microstructure and texture development in magnesium–manganese alloys during extrusion. Mater Sci Eng A Struct. 2010;527:7092.

    Article  Google Scholar 

  22. Xie ZR, Zhang C, Pan HC. Microstructures and bio-corrosion resistances of as-extruded Mg–Ca alloys with ultra-fine grain size. Rare Met. 2017. https://doi.org/10.1007/s12598-017-0945-2.

    Article  Google Scholar 

  23. Che QY, Wang KS, Wang W, Huang LY, Li TQ, Xi XP, Peng P, Qiao K. Microstructure and mechanical properties of magnesium–lithium alloy prepared by friction stir processing. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01217-2.

    Article  Google Scholar 

  24. Li X, Fan YF, Huo C. Corrosion resistance of nanostructured magnesium hydroxide coating on magnesium alloy AZ31: influence of EDTA. Rare Met. 2019;38(6):520.

    Article  Google Scholar 

  25. Stanford N, Barnett M. Effect of composition on the texture and deformation behaviour of wrought Mg alloys. Scr Mater. 2008;58:179.

    Article  CAS  Google Scholar 

  26. Kim WJ, Jeong HG. Mechanical properties and texture evolution in ECAP processed AZ61 Mg alloys. Mater Sci Forum. 2003;419(4):201.

    Article  Google Scholar 

  27. Jiang MG, Yan H, Chen RS. Enhanced mechanical properties due to grain refinement and texture modification in an AZ61 Mg alloy processed by small strain impact forging. Mater Sci Eng A Struct. 2015;621:204.

    Article  CAS  Google Scholar 

  28. Liu M, Zanna S, Ardelean H, Frateur I, Schmutz P, Song GL. A preliminary quantitative XPS study of the surface films formed on pure Magnesium and on Magnesium–Aluminium intermetallics by exposure to high-purity water. Mater Sci Forum. 2009;618–619:255.

    Article  Google Scholar 

  29. Ahmadkhaniha D, Fedel M, Heydarzadeh Sohi M, Deflorian F. Corrosion behavior of severely plastic deformed magnesium based alloys: a review. Sur Eng Appl Electr. 2017;53(5):439.

    Article  Google Scholar 

  30. Song GL, Mishra R, Xu Z. Crystallographic orientation and electrochemical activity of AZ31 Mg alloy. Electrochem Commun. 2010;12(8):1009.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2016YFC1101804 and 2016YFC1100604), the National Natural Science Foundation of China (Nos. 51971222 and 51801220), the Natural Science Foundation of Liaoning Province of China (No. 2019-MS-326).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Li Tan or Ke Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Ma, Z., Etim, I.P. et al. Microstructure, mechanical and corrosion properties of Mg–Zn–Nd alloy with different accumulative area reduction after room-temperature drawing. Rare Met. 40, 897–907 (2021). https://doi.org/10.1007/s12598-020-01460-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01460-y

Keywords

Navigation