Skip to main content
Log in

Characterization and Improvement in the Corrosion Performance of a Hot-Chamber Diecast Mg Alloy Thin Plate by the Removal of Interdendritic Phases at the Die Chill Layer

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work presents results concerning the effect of the die chill layer on the corrosion performance of a hot-chamber diecast AZ91D thin plate, with particular attention to the role of interdendritic phases (primary β (Al17Mg12) and surrounding α phase). The primary β phase in the die chill layer was removed by Ar+ etching, but the other main constituent phases remained on the surface of the sample. Although previous researchers have attributed intense galvanic corrosion to the cathodic phase (primary β), this work demonstrates that the removal of the primary β phase from the diecast sample surface did not improve the corrosion performance of the sample. Transmission electron microscope (TEM) examinations were performed, to elucidate the microstructure near the die chill surface, especially focusing on the α-Mg phase that surrounds the primary β phase. The surrounding α-Mg phase (known as “Al-rich α” or eutectic α) actually did not contain a high concentration of aluminum solid solution. Instead, the Al-rich α was composed of fine Al12Mg17 β particles and Al-Mn-like particles (smaller than 0.5 μm) that were distributed in a low-Al-containing Mg matrix (∼4 wt pct Al). Such fine cathodic particles seem to participate strongly in the corrosion. Removing the primary β phase alone did not increase the corrosion resistance of the material, because many of the cathodic fine particles remained in the Al-rich α phase region. This work studied an HF-H2SO4/CaCO3 etching method for removing interdendritic phases (both the Al-rich α and the primary β) from the surface chill layer of the diecast thin plate. Therefore, testing in 5 wt pct chloride solution demonstrated that the I corr of the HF-H2SO4/CaCO3-treated specimen was 3 to ∼16 μA/cm2, which was significantly lower than the I corr ∼ 1600 μA/cm2 of the as-diecast Mg sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. EG&G Model 263A is a trademark of AMETEK Princeton Applied Research, Oak Ridge, TN.

  2. EG&G M352 software is a trademark of AMETEK Princeton Applied Research, Oak Ridge, TN.

  3. EG&G Model 5210 is a trademark of AMETEK Princeton Applied Research, Oak Ridge, TN.

  4. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. N. Li: Mater. Sci. Forum, 2005, vols. 488–489, pp. 931–35

    Article  Google Scholar 

  2. M. Avedesian, H. Baker: Magnesium and Magnesium Alloys, ASM Specialty Handbook, ASM International, Materials Park, OH, 1999, pp. 1–71

    Google Scholar 

  3. I. Nakatsugawa, H. Takayasu, and K. Saito: in Magnesium Alloys and Their Applications, Int. Congr. of Magnesium Alloys and Their Applications, Munich, Sept. 26–28, 2000, K.U. Kainer, ed., Wiley-Vch, Weinheim, Germany, 2000, pp. 445–50

  4. C.Y. Cho, J.Y. Uan, H.J. Lin: Mater. Sci. Eng., A, 2005, vol. 402, pp. 193–202

    Article  CAS  Google Scholar 

  5. D.A. Jones: Principles and Prevention of Corrosion, 2nd ed., Prentice Hall, Englewood Cliffs, NJ, 1996, pp. 40–74

    Google Scholar 

  6. A. Elbetieha, M.H. Al-Hamood: Toxicology, 1997, vol. 116, pp. 39–47

    Article  CAS  Google Scholar 

  7. H. Huo, Y. Li, F. Wang: Corros. Sci., 2004, vol. 46, pp. 1467–77

    Article  CAS  Google Scholar 

  8. A.L. Rudd, C.B. Breslin, F. Mansfeld: Corros. Sci., 2000, vol. 42, pp. 275–88

    Article  CAS  Google Scholar 

  9. K.Z. Chong, T.S. Shih: Mater. Chem. Phys., 2003, vol. 80, pp. 191–200

    Article  CAS  Google Scholar 

  10. D. Hawke, D.L. Albright: Met. Finish., 1995, vol. 93 pp. 34–38

    Article  CAS  Google Scholar 

  11. C.S. Lin, S.K. Fang: J. Electrochem. Soc., 2005, vol. 152, pp. B54–B59

    Article  CAS  Google Scholar 

  12. M.A. Gonzalez-Nunez, C.A. Nunez-Lopez, P. Skeldon, G.E. Thompson, H. Karimzadeh, P. Lyon, T.E. Wilks: Corros. Sci., 1995, vol. 37, pp. 1763–72

    Article  CAS  Google Scholar 

  13. M.A. Gonzalez-Nunez, P. Skeldon, G.E. Thompson, H. Karimzadeh: Corrosion, 1999, vol. 55, pp. 1136–43

    Article  CAS  Google Scholar 

  14. M. Dabala, K. Brunelli, E. Napolitani, M. Magrini: Surf. Coat. Technol., 2003, vol. 172, pp. 227–32

    CAS  Google Scholar 

  15. M.P. Schriever: Canadian Patent 2,056,159, 1990

  16. J.E. Gray, B. Luan: J. Alloys Compd., 2002, vol. 336, pp. 88–113

    Article  CAS  Google Scholar 

  17. G. Hanko, H. Antrekowitsch, P. Ebner: JOM, 2002, vol. 54, pp. 51–54

    Article  CAS  Google Scholar 

  18. J.I. Skar, L.K. Sivertsen, and J.M. Oster: Int. Conf. on Environmental Friendly Pre-Treatment for Aluminum and Other Metals, Sintef, Oslo, Norway, 2004, pp. 1–4

  19. C.E.M. Meskers, A. Kvithyld, M.A. Reuter, and T.A. Engh: Magnesium Technology—TMS Annual Meeting 2006, A.A. Luo, N.R. Neelameggham, R.S. Beals, eds., The Minerals, Metals & Materials Society, Warrendale, PA, pp. 33–38

  20. A. Yamamoto, A. Watanabe, K. Sugahara, S. Fukumoto, H. Tsubakino: Mater. Trans., 2001, vol. 42, pp. 1237–42

    Article  CAS  Google Scholar 

  21. B.L. Yu, J.Y. Uan: Scripta Mater., 2006, vol. 54, pp. 1253–57

    Article  CAS  Google Scholar 

  22. G. Song, A. Atrens, X. Wu, B. Zhang: Corros. Sci., 1998, vol. 40, pp. 1769–91

    Article  CAS  Google Scholar 

  23. N. Pebere, C. Riera, F. Dabosi: Electrochim. Acta, 1990, vol. 35, pp. 555–61

    Article  CAS  Google Scholar 

  24. G. Song, A. Atrens, M. Dargusch: Corros. Sci., 1999, vol. 41, pp. 249–73

    Article  CAS  Google Scholar 

  25. C. Blawert, E. Morales, V. Heitmann, and W. Dietzel: Light Metals 2005, 44th Annual Conf. of Metallurgists of CIM, Calgary, AB, 2005, J.P. Martin, ed., The Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Quebec, Canada, pp. 109–26

  26. C. Blawert, V. Heitmann, E. Morales, W. Dietzel, S. Jin, E. Ghali: Can. Metall. Q., 2005, vol. 44, pp. 137–46

    CAS  Google Scholar 

  27. B.L. Yu, J.Y. Uan: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2245–52

    Article  CAS  Google Scholar 

  28. Reagent Chemicals: American Chemical Society Specifications, 7th ed., American Chemical Society, Washington, DC, 1986, pp. 284–86

  29. H. Hoche, H. Scheerer, R. Fritsche, A. Thissen, S. Flege, E. Broszeit, C. Berger, H.M. Ortner, W. Jaegermann: Materialwiss. Werkstofftech., 2002, vol. 33, pp. 132–41

    Article  CAS  Google Scholar 

  30. Y.W. Shin, G.A. Sargent, H. Conrad: Metall. Trans. A, 1987, vol. 18A, pp. 437–50

    CAS  Google Scholar 

  31. R.G. Wellman, C. Allen: Wear, 1995, vols. 186–187, pp. 117–22

    Article  Google Scholar 

  32. ASTM B117: Standard Test Method of Salt Spray Testing, ASTM, Philadelphia, PA, 1990, pp. 20–26

  33. S.J. Pennycook, D.E. Jesson: Ultramicroscopy, 1991, vol. 37, pp. 14–38

    Article  Google Scholar 

  34. H.E. Friedrich, B.L. Mordike: Magnesium Technology: Metallurgy, Design Data, Applications, Springer-Verlag, Berlin, Germany, 2006, pp. 217–68

    Google Scholar 

  35. O. Lunder: Corros. Rev., 1997, vol. 15, pp. 439–69

    CAS  Google Scholar 

  36. S. Mathieu, C. Rapin, J. Hazan, P. Steinmetz: Corros. Sci., 2002, vol. 44, pp. 2737–56

    Article  CAS  Google Scholar 

  37. G. Song, A. Atrens: Adv. Eng. Mater., 2003, vol. 5, pp. 837–53

    Article  CAS  Google Scholar 

  38. S. Mathieu, C. Rapin, J. Steinmetz, P. Steinmetz: Corros. Sci., 2003, vol. 45, pp. 2741–55

    Article  CAS  Google Scholar 

  39. O. Lunder, J.E. Lein, T.Kr. Aune, K. Nisancioglu: Corrosion, 1989, vol. 45, pp. 741–48

    CAS  Google Scholar 

  40. O. Lunder, M. Videm, and K. Nisancioglu: SAE. SP., 1995, pp. 57–62

  41. R. Ambat, N.N. Aung, W. Zhou: Corros. Sci., 2000, vol. 42, pp. 1433–55

    Article  CAS  Google Scholar 

  42. N.N. Aung, W. Zhou: J. Appl. Electrochem., 2002, vol. 32, pp. 1397–1401

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Trysyntec Technology Cooperation Limited (Taoyuan, Taiwan) for providing the qualified diecast AZ91D panels used in this study. The authors also greatly appreciate Professor S.K. Yen, Department of Materials Science and Engineering, National Chung Hsing University, for providing some very useful discussions. Ms. L. C. Wang, National Sun Yat-Sen University, is acknowledged for her assistance with the TEM works. The authors are also grateful to the National Science Council of Taiwan for financially supporting this work (Contract No. NSC 92-2216-E-005-018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Yen Uan.

Additional information

Manuscript submitted October 29, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uan, JY., Li, CF. & Yu, BL. Characterization and Improvement in the Corrosion Performance of a Hot-Chamber Diecast Mg Alloy Thin Plate by the Removal of Interdendritic Phases at the Die Chill Layer. Metall Mater Trans A 39, 703–715 (2008). https://doi.org/10.1007/s11661-007-9420-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9420-2

Keywords

Navigation