Skip to main content
Log in

Microstructure and wear resistance of CoCrNbNiW high-entropy alloy coating prepared by laser melting deposition

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The defect-free CoCrNbNiW high-entropy alloy coating was successfully prepared by laser melting deposition, and its microstructure and wear resistance were investigated. The results showed that the microstructure of CoCrNbNiW high-entropy alloy coating consisted of fcc phase rich in Nb and fcc phase including un-melted W particles and rich in Cr. Moreover, an amount of fcc phase was formed at the middle and top of coating, while the bcc phase rich in Cr was formed at the bottom. Meanwhile, the un-melted W particles were diffusely distributed in the coating. Therefore, the microhardness of CoCrNbNiW high-entropy alloy coating was improved and was 2.78 times as high as that of substrate. The wear loss and wear rate of coating were 0.26 and 0.23 times higher than those of substrate, respectively. The wear resistance of substrate was obviously improved due to the preparation of CoCrNbNiW high-entropy alloy coating.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cai Y, Young B. Carbon steel and stainless steel bolted connections undergoing unloading and re-loading processes. J Constr Steel Res. 2019;157:337.

    Article  Google Scholar 

  2. Cordero Z, Knight B, Schuh C. Six decades of the Hall–Petch effect—a survey of grain-size strengthening studies on pure metals. Int Mater Rev. 2016;61(8):495.

    Article  CAS  Google Scholar 

  3. Xu Y, Li M, Sun X, Liu M. Anticorrosive behaviors of phosphatized carbon steel in hot-dry-rock geothermal water. Surf Coat Technol. 2019;370:340.

    Article  CAS  Google Scholar 

  4. Rodrigues J, Laim L. Comparing fire behaviour of restrained hollow stainless steel with carbon steel columns. J Constr Steel Res. 2019;153:44.

    Article  Google Scholar 

  5. Fenili C, Souza F, Marin G, Probst S, Klein A. Corrosion resistance of low-carbon steel modified by plasma nitriding and diamond-like carbon. Diam Relat Mater. 2017;80:153.

    Article  CAS  Google Scholar 

  6. Takata N, Kodaira H, Suzuki A, Kobashi M. Size dependence of microstructure of AlSi10Mg alloy fabricated by selective laser melting. Mater Charact. 2018;143:18.

    Article  CAS  Google Scholar 

  7. Buendia C, Fromel F, Wilms M, Streubel R, Tenkamp J, Hupfeld T, Nachev M, Gokce E, Weisheit A, Barcikowski S, Walther F, Schleifenbaum J, Gokce B. Oxide dispersion-strengthened alloys generated by laser metal deposition of laser-generated nanoparticle-metal powder composites. Mater Des. 2018;154:360.

    Article  Google Scholar 

  8. Wang D, Yang X, Liao Q, Peng H, Wen Y. Significant improvement of shape memory effect in Co–Ni-based alloys through Si alloying. J Alloy Compd. 2019;791:501.

    Article  CAS  Google Scholar 

  9. Qiao C, Shen L, Hao L, Mu X, Liu B. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere. Acta Metall Sin. 2018;54(1):65.

    Google Scholar 

  10. Zhaia L, Bana C, Zhang J. Investigation on laser cladding Ni-base coating assisted by electromagnetic field. Opt Laser Technol. 2019;114:81.

    Article  Google Scholar 

  11. Musil J, Jaros M, Kos S. Superhard metallic coatings. Mater Lett. 2019;247:32.

    Article  CAS  Google Scholar 

  12. Guo L, Dai Q, Huang W, Wang X. Composite Ni/UHMWPE coatings and their tribological performances. Appl Surf Sci. 2019;481:414.

    Article  CAS  Google Scholar 

  13. Zhao Z, Hui P, Liu F, Wang X, Li B, Xu Y, Zhong L, Zhao M. Fabrication of TaC coating on tantalum by interstitial carburization. J Alloy Compd. 2019;790:189.

    Article  CAS  Google Scholar 

  14. Xie L, Xiong X, Zeng Y, Wang Y. The wear properties and mechanism of detonation sprayed iron-based amorphous coating. Surf Coat Technol. 2019;366:146.

    Article  CAS  Google Scholar 

  15. Li H, Zhang C, Liu C, Huang M. Improvement in corrosion resistance of CrN coatings. Surf Coat Technol. 2019;365:158.

    Article  CAS  Google Scholar 

  16. Yoshida S, Bhattacharjee T, Bai Y, Tsuji N. Friction stress and Hall–Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing. Scripta Mater. 2017;134:33.

    Article  CAS  Google Scholar 

  17. Ma S, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater Sci Eng A. 2012;532:480.

    Article  CAS  Google Scholar 

  18. Shu F, Zhang B, Liu T, Sui S, Liu Y, He P, Liu B, Xu B. Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings. Surf Coat Technol. 2019;358:667.

    Article  CAS  Google Scholar 

  19. Shang C, Axinte E, Sun J, Li X, Li P, Du J, Qiao P, Wang Y. CoCrFeNi(W1−xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering. Mater Des. 2017;117:193.

    Article  CAS  Google Scholar 

  20. Jiang Y, Li J, Juan Y, Lu Z, Jia W. Evolution in microstructure and corrosion behavior of AlCoCrxFeNi high-entropy alloy coatings fabricated by laser cladding. J Alloy Compd. 2019;775:1.

    Article  CAS  Google Scholar 

  21. Li X, Feng Y, Liu B, Yi D, Yang X, Zhang W, Chen G, Liu Y, Bai P. Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. J Alloy Compd. 2019;788:485.

    Article  CAS  Google Scholar 

  22. Ni C, Shi Y, Liu J, Huang G. Characterization of Al0.5FeCu0.7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding. Opt Laser Technol. 2018;105:257.

    Article  CAS  Google Scholar 

  23. Dobbelstein H, Gurevich E, George E, Ostendorf A, Laplanche G. Laser metal deposition of a refractory TiZrNbHfTa high-entropy alloy. Addit Manuf. 2018;24:386.

    Article  CAS  Google Scholar 

  24. Chang R, Fang W, Bai X, Xia C, Zhang X, Yu H, Liu B, Yin F. Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys. J Alloy Compd. 2019;790:732.

    Article  CAS  Google Scholar 

  25. Miracle D, Senkov O. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448.

    Article  CAS  Google Scholar 

  26. Tian Y, Shen Y, Lu C, Feng X. Microstructures and oxidation behavior of Al–CrMnFeCoMoW composite coatings on Ti–6Al–4V alloy substrate via high-energy mechanical alloying method. J Alloy Compd. 2019;779:456.

    Article  CAS  Google Scholar 

  27. Hu Y, Liu X, Guo N, Wang L, Su Y, Guo J. Microstructure and mechanical properties of NbZrTi and NbHfZrTi alloys. Rare Met. 2019;38(9):840.

    Article  CAS  Google Scholar 

  28. Wang Q, Xi Y, Zhao Y, Liu S, Bai S, Liu Z. Effects of laser re-melting and annealing on microstructure, mechanical property and corrosion resistance of Fe-based amorphous/crystalline composite coating. Mater Charact. 2017;127:239.

    Article  CAS  Google Scholar 

  29. Tian W, Yang H, Zhang S. Synergistic effect of Mo, W, Mn and Cr on the passivation behavior of a Fe-based amorphous alloy coating. Acta Metall Sin. 2018;31(3):308.

    Article  CAS  Google Scholar 

  30. Takeuchi A, Inoue A. Special issue on materials science of bulk metallic glasses—classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans. 2005;12:2818.

    Google Scholar 

  31. Zhao S, Zhou S, Xie M, Dai X, Chen D, Zhang L. Phase separation and enhanced wear resistance of Cu88Fe12 immiscible coating prepared by laser cladding. J Mater Res Technol. 2019;8:2001.

    Article  CAS  Google Scholar 

  32. Rabadia C, Liu Y, Wang L, Sun H, Zhang L. Laves phase precipitation in Ti–Zr–Fe–Cr alloys with high strength and large plasticity. Mater Des. 2018;154:228.

    Article  CAS  Google Scholar 

  33. Haque M, Sharif A. Study on wear properties of aluminium-silicon piston alloy. J Mater Process Technol. 2001;118:69.

    Article  CAS  Google Scholar 

  34. Huang W, Wang W, Zhang H, Shi S, Xie P. Precipitated phase of titanium alloy with adding Nd elements. Chin J Rare Met. 2017;41(3):245.

    Google Scholar 

  35. Shao H, Qu J. Friction and wear. Beijing: Metallurgical Industry Press; 1988. 120.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2017YFB1103604).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Jun Jia or Han-Ning Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, YJ., Chen, HN. & Liang, XD. Microstructure and wear resistance of CoCrNbNiW high-entropy alloy coating prepared by laser melting deposition. Rare Met. 38, 1153–1159 (2019). https://doi.org/10.1007/s12598-019-01342-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01342-y

Keywords

Navigation