Skip to main content
Log in

Microstructure and Wear Behavior of AlCoCrFeNiTi0.5 High Entropy Alloy Coating Prepared by Electron Beam Cladding on Ti-6Al-4V Substrate

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

AlCoCrFeNiTi0.5 high entropy alloy (HEA) coating with high hardness and excellent wear resistance was deposited on TC4 surface by electron beam cladding, and the process parameters, microstructure and properties of the coating were studied. The analysis shows that the microstructure of HEA coating is composed of dendritic (DR) and interdendritic (IR) phases. The IR phase, which is mainly composed of Fe and Cr, is confirmed to be BCC solid solution, while the DR phase is FCC solid solution with AlNi2Ti (or AlCo2Ti) structure. The grain orientation of the HEA coating is random, without obvious texture. Hardness gradually decreases from the upper part area of the HEA coating to the inner of the TC4 substrate. The hardness curve in the HEA coating region has some fluctuations, but the fluctuations are small, indicating a homogeneous microstructure. The average hardness of the HEA coating is 796.18 HV0.2, which is about 2.6 times that of the TC4 substrate. The HEA coating exhibits a higher coefficient of friction (COF) compared to the TC4 substrate. The average COF of HEA coating and TC4 substrate in the stable stage are 0.57 and 0.48, respectively. Wear loss of the HEA coating is 0.0657 mm3, about one tenth of that of TC4 substrate (0.6112 mm3). The hardness of the HEA coating is high, no obvious furrow is found, and its wear mechanism is considered to be a mixture of adhesive wear and oxidation wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. M.-H. Tsai and J.-W. Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett., 2014, 2, p 107–123. https://doi.org/10.1080/21663831.2014.912690

    Article  CAS  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303. https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  3. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004 https://doi.org/10.1016/j.msea.2003.10.257

    Article  Google Scholar 

  4. L. Hou, J. Hui, Y. Yao, J. Chen, and J. Liu, Effects of Boron Content on Microstructure and Mechanical Properties of AlFeCoNiBx High Entropy Alloy Prepared by Vacuum Arc Melting, Vacuum, 2019, 164, p 212–218. https://doi.org/10.1016/j.vacuum.2019.03.019

    Article  CAS  Google Scholar 

  5. T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, and C.T. Liu, Multicomponent Intermetallic Nanoparticles and Superb Mechanical Behaviors of Complex Alloys, Science, 2018, 362, p 933–937. https://doi.org/10.1126/science.aas8815

    Article  CAS  Google Scholar 

  6. Z. Xu, D.Y. Li, and D.L. Chen, Effect of Ti on the Wear Behavior of AlCoCrFeNi High-Entropy Alloy During Unidirectional and Bi-Directional Sliding Wear Processes, Wear, 2021 https://doi.org/10.1016/j.wear.2021.203650

    Article  Google Scholar 

  7. M. Pole, M. Sadeghilaridjani, J. Shittu, A. Ayyagari, and S. Mukherjee, High Temperature Wear Behavior of Refractory High Entropy Alloys Based on 4-5-6 Elemental Palette, J. Alloys Compd., 2020 https://doi.org/10.1016/j.jallcom.2020.156004

    Article  Google Scholar 

  8. R. Zhou, G. Chen, B. Liu, J. Wang, L. Han, and Y. Liu, Microstructures and Wear Behaviour of (FeCoCrNi)1–x(WC)x High Entropy Alloy Composites, Int. J. Refract. Metal Hard Mater., 2018, 75, p 56–62. https://doi.org/10.1016/j.ijrmhm.2018.03.019

    Article  CAS  Google Scholar 

  9. P. Muangtong, A. Rodchanarowan, D. Chaysuwan, N. Chanlek, and R. Goodall, The Corrosion Behaviour of CoCrFeNi-x (x = Cu, Al, Sn) High Entropy Alloy Systems in Chloride Solution, Corros. Sci., 2020 https://doi.org/10.1016/j.corsci.2020.108740

    Article  Google Scholar 

  10. Y.Y. Liu, Z. Chen, J.C. Shi, Z.Y. Wang, and J.Y. Zhang, The Effect of Al Content on Microstructures and Comprehensive Properties in AlxCoCrCuFeNi High Entropy Alloys, Vacuum, 2019, 161, p 143–149. https://doi.org/10.1016/j.vacuum.2018.12.009

    Article  CAS  Google Scholar 

  11. S.E. Sünbül, K. İçi̇n, F.Z. Şeren, Ö. Şahin, D.D. Cakil, R. Sezer, and S. Öztürk, Determination of Structural, Tribological, Isothermal Oxidation and Corrosion Properties of Al–Co–Cr–Fe–Ni–Ti–Cu High-Entropy Alloy, Vacuum, 2021, 187, p 110072. https://doi.org/10.1016/j.vacuum.2021.110072

    Article  CAS  Google Scholar 

  12. R. Gawel, Ł Rogal, J. Dąbek, M. Wójcik-Bania, and K. Przybylski, High Temperature Oxidation Behaviour of Non-Equimolar AlCoCrFeNi High Entropy Alloys, Vacuum, 2021 https://doi.org/10.1016/j.vacuum.2020.109969

    Article  Google Scholar 

  13. S. Wang, Z. Chen, P. Zhang, K. Zhang, C.L. Chen, and B.L. Shen, Influence of Al Content on High Temperature Oxidation Behavior of AlxCoCrFeNiTi0.5 High Entropy Alloys, Vacuum, 2019, 163, p 263–268. https://doi.org/10.1016/j.vacuum.2019.01.053

    Article  CAS  Google Scholar 

  14. M. Lobel, T. Lindner, T. Mehner, and T. Lampke, Influence of Titanium on Microstructure, Phase Formation and Wear Behaviour of AlCoCrFeNiTi(x) High-Entropy Alloy, Entropy, 2018 https://doi.org/10.3390/e20070505

    Article  Google Scholar 

  15. D. Kong, J. Guo, R. Liu, X. Zhang, Y. Song, Z. Li, F. Guo, X. Xing, Y. Xu, and W. Wang, Effect of Remelting and Annealing on the Wear Resistance of AlCoCrFeNiTi0.5 High Entropy Alloys, Intermetallics, 2019 https://doi.org/10.1016/j.intermet.2019.106560

    Article  Google Scholar 

  16. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid Solution Alloys of AlCoCrFeNiTix with Excellent Room-Temperature Mechanical Properties, Appl. Phys. Lett., 2007 https://doi.org/10.1063/1.2734517

    Article  Google Scholar 

  17. Y.J. Zhou, Y. Zhang, and Y.L. Wang, Solid Solution Alloys of AlCoCrFeNiTiX with Excellent Room-Temperature Mechanical Properties, Appl. Phys. Lett., 2007, 90, p 181904.

    Article  Google Scholar 

  18. X. Zeng, Z. Liu, G. Wu, X. Tong, Y. Xiong, X. Cheng, X. Wang, and T. Yamaguchi, Microstructure and High-Temperature Properties of Laser Cladded AlCoCrFeNiTi0.5 High-Entropy Coating on Ti 6Al-4V Alloy, Surf. Coat. Technol., 2021 https://doi.org/10.1016/j.surfcoat.2021.127243

    Article  Google Scholar 

  19. W.Y. Cui, W. Li, W.T. Chen, and F. Liou, Laser Metal Deposition of an AlCoCrFeNiTi0.5 High-Entropy Alloy Coating on a Ti6Al4V Substrate, Microstruct. Oxidat. Behav. Cryst., 2020, 10, p 638.

    CAS  Google Scholar 

  20. Y.J. Zhou, Y. Zhang, T.N. Kim, and G.L. Chen, Microstructure Characterizations and Strengthening Mechanism of Multi-Principal Component AlCoCrFeNiTi0.5 Solid Solution Alloy with Excellent Mechanical Properties, Mater. Lett., 2008, 62, p 2673–2676. https://doi.org/10.1016/j.matlet.2008.01.011

    Article  CAS  Google Scholar 

  21. G. Liu, C. Xu, H. Chen, X. Hou, and Y. Liu, Electroless Deposition Method for Silver-Coated Carbon Fibres, Micro Nano Lett., 2015, 10, p 315–317. https://doi.org/10.1049/mnl.2014.0620

    Article  CAS  Google Scholar 

  22. G. Zhao, Y. Zou, H. Zhang, and Z. Zou, Correlation Between Corrosion Resistance and the Local Atomic Structure of Electroless, Annealed Ni–P Amorphous Alloys, Mater. Lett., 2014, 132, p 221–223. https://doi.org/10.1016/j.matlet.2014.06.081

    Article  CAS  Google Scholar 

  23. H. Luo, Q. Cai, B. Wei, B. Yu, D. Li, J. He, and Z. Liu, Effect of (NaPO3)6 Concentrations on Corrosion Resistance of Plasma Electrolytic Oxidation Coatings Formed on AZ91D Magnesium Alloy, J. Alloy. Compd., 2008, 464, p 537–543. https://doi.org/10.1016/j.jallcom.2007.10.072

    Article  CAS  Google Scholar 

  24. A. Anupam, R.S. Kottada, S. Kashyap, A. Meghwal, B.S. Murty, C.C. Berndt, and A.S.M. Ang, Understanding the Microstructural Evolution of High Entropy Alloy Coatings Manufactured by Atmospheric Plasma Spray Processing, Appl. Surf. Sci., 2020 https://doi.org/10.1016/j.apsusc.2019.144117

    Article  Google Scholar 

  25. W. Wang, W. Qi, L. Xie, X. Yang, J. Li, and Y. Zhang, Microstructure and Corrosion Behavior of (CoCrFeNi)(95)Nb(5) High-Entropy Alloy Coating Fabricated by Plasma Spraying, Materials, 2019 https://doi.org/10.3390/ma12050694

    Article  Google Scholar 

  26. M. Srivastava, M. Jadhav, R.P.S. Chakradhar, M. Muniprakash, and S. Singh, Synthesis and Properties of High Velocity Oxy-Fuel Sprayed FeCoCrNi2Al High Entropy Alloy Coating, Surf. Coat. Technol., 2019 https://doi.org/10.1016/j.surfcoat.2019.124950

    Article  Google Scholar 

  27. L. Chen, Y. Wang, X. Hao, X. Zhang, and H. Liu, Lightweight Refractory High Entropy Alloy Coating by Laser Cladding on Ti–6Al–4V Surface, Vacuum, 2021 https://doi.org/10.1016/j.vacuum.2020.109823

    Article  Google Scholar 

  28. Y. Cui, J. Shen, S.M. Manladan, K. Geng, and S. Hu, Wear Resistance of FeCoCrNiMnAlx High-Entropy Alloy Coatings at High Temperature, Appl. Surf. Sci., 2020 https://doi.org/10.1016/j.apsusc.2020.145736

    Article  Google Scholar 

  29. J. Cheng, B. Sun, Y. Ge, X. Hu, L. Zhang, X. Liang, and X. Zhang, Nb Doping in Laser-cladded Fe25Co25Ni25(B0.7Si0.3)25 High Entropy Alloy Coatings: Microstructure Evolution and Wear Behavior, Surf. Coat. Technol., 2020 https://doi.org/10.1016/j.surfcoat.2020.126321

    Article  Google Scholar 

  30. G.H. Meng, N.A. Protasova, E.P. Kruglov, X. Lin, H. Xie, and X. Ding, Solidification Behavior and Morphological Evolution in Laser Surface Forming of AlCoCrCuFeNi Multi-Layer High-Entropy Alloy Coatings on AZ91D, J. Alloy. Compd., 2019, 772, p 994–1002. https://doi.org/10.1016/j.jallcom.2018.09.120

    Article  CAS  Google Scholar 

  31. Q. Fan, C. Chen, C. Fan, Z. Liu, X. Cai, S. Lin, and C. Yang, Ultrasonic Suppression of Element Segregation in Gas Tungsten Arc Cladding AlCoCuFeNi High-Entropy Alloy Coatings, Surf. Coat. Technol., 2021 https://doi.org/10.1016/j.surfcoat.2021.127364

    Article  Google Scholar 

  32. Q. Fan, C. Chen, C. Fan, Z. Liu, X. Cai, S. Lin, and C. Yang, Effect of High Fe Content on the Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Coatings Prepared by Gas Tungsten Arc Cladding, Surf. Coat. Technol., 2021 https://doi.org/10.1016/j.surfcoat.2021.127242

    Article  Google Scholar 

  33. G. Dai, S. Wu, and X. Huang, Preparation Process for High-Entropy Alloy Coatings based on Electroless Plating and Thermal Diffusion, J. Alloy. Compd., 2022 https://doi.org/10.1016/j.jallcom.2022.163736

    Article  Google Scholar 

  34. A. Vallimanalan, S.P.K. Babu, S. Muthukumaran, M. Murali, V. Gaurav, and R. Mahendran, Corrosion Behaviour of Thermally Sprayed Mo Added AlCoCrNi High Entropy Alloy Coating, Mater. Today Proc., 2020, 27, p 2398–2400. https://doi.org/10.1016/j.matpr.2019.09.149

    Article  CAS  Google Scholar 

  35. S. Li and T. Yamaguchi, High-Temperature Oxidation Performance of Laser-Cladded Amorphous TiNiSiCrCoAl High-Entropy Alloy Coating on Ti-6Al-4V Surface, Surf. Coat. Technol., 2022 https://doi.org/10.1016/j.surfcoat.2022.128123

    Article  Google Scholar 

  36. H. Liu, Q. Gao, J. Dai, P. Chen, W. Gao, J. Hao, and H. Yang, Microstructure and High-Temperature Wear Behavior of CoCrFeNiWx High-Entropy Alloy Coatings Fabricated by Laser Cladding, Tribol. Int., 2022 https://doi.org/10.1016/j.triboint.2022.107574

    Article  Google Scholar 

  37. X.W. Tao, Z.J. Yao, S.S. Zhang, J. Liao, and J. Liang, Investigation on Microstructure, Mechanical and Tribological Properties of In-Situ (TiB + TiC)/Ti Composite During the Electron Beam Surface Melting, Surf. Coat. Technol., 2018, 337, p 418–425. https://doi.org/10.1016/j.surfcoat.2018.01.054

    Article  CAS  Google Scholar 

  38. O.B. Perevalova, A.V. Panin, and M.S. Kazachenok, Concentration-Dependent Transformation Plasticity Effect During Hydrogenation of Technically Pure Titanium Irradiated with an Electron Beam, Russ. Phys. J., 2019, 61, p 1992–2000. https://doi.org/10.1007/s11182-019-01629-8

    Article  CAS  Google Scholar 

  39. T. Yu, H. Wang, K. Han, and B. Zhang, Microstructure and Wear Behavior of AlCrTiNbMo High-Entropy Alloy Coating Prepared by Electron Beam Cladding on Ti600 Substrate, Vacuum, 2022 https://doi.org/10.1016/j.vacuum.2022.110928

    Article  Google Scholar 

  40. T. Yu, H. Wang, K. Han, Y. Wang, Y. Qiu, and B. Zhang, Mo20Nb20Co20Cr20(Ti8Al8Si4) Refractory High-Entropy Alloy Coatings Fabricated by Electron Beam Cladding: Microstructure and Wear Resistance, Intermetallics, 2022 https://doi.org/10.1016/j.intermet.2022.107669

    Article  Google Scholar 

  41. A.A. Ruktuev, D.V. Lazurenko, T.S. Ogneva, R.I. Kuzmin, M.G. Golkovski, and I.A. Bataev, Structure and Oxidation Behavior of CoCrFeNiX (where X is Al, Cu, or Mn) Coatings Obtained by Electron Beam Cladding in Air Atmosphere, Surf. Coat. Technol., 2022 https://doi.org/10.1016/j.surfcoat.2022.128921

    Article  Google Scholar 

  42. I.A. Bataev, D.O. Mul, A.A. Bataev, O.G. Lenivtseva, M.G. Golkovski, Y.S. Lizunkova, and R.A. Dostovalov, Structure and Tribological Properties of Steel After Non-Vacuum Electron Beam Cladding of Ti, Mo and Graphite Powders, Mater. Charact., 2016, 112, p 60–67. https://doi.org/10.1016/j.matchar.2015.11.028

    Article  CAS  Google Scholar 

  43. S. Guo, Q. Hu, C. Ng, and C.T. Liu, More than Entropy in High-Entropy Alloys: Forming Solid Solutions or Amorphous Phase, Intermetallics, 2013, 41, p 96–103. https://doi.org/10.1016/j.intermet.2013.05.002

    Article  CAS  Google Scholar 

  44. V. Shivam, Y. Shadangi, J. Basu, and N.K. Mukhopadhyay, Alloying Behavior and Thermal Stability of Mechanically Alloyed Nano AlCoCrFeNiTi High-Entropy Alloy, J. Mater. Res., 2019, 34, p 787–795. https://doi.org/10.1557/jmr.2019.5

    Article  CAS  Google Scholar 

  45. Z. Xiong, S. Liu, X. Wang, C. Shang, X. Li, and R.D.K. Misra, The Contribution of Intragranular Acicular Ferrite Microstructural Constituent on Impact Toughness and Impeding Crack Initiation and Propagation in the Heat-Affected Zone (HAZ) of Low-Carbon Steels, Mater. Sci. Eng., A, 2015, 636, p 117–123. https://doi.org/10.1016/j.msea.2015.03.090

    Article  CAS  Google Scholar 

  46. Y. Cai, L. Zhu, Y. Cui, M. Shan, H. Li, Y. Xin, and J. Han, Fracture and Wear Mechanisms of FeMnCrNiCo+x(TiC) Composite High-Entropy Alloy Cladding Layers, Appl. Surf. Sci., 2021 https://doi.org/10.1016/j.apsusc.2020.148794

    Article  Google Scholar 

  47. B. Bax, M. Schäfer, C. Pauly, and F. Mücklich, Coating and Prototyping of Single-Phase Iron Aluminide by Laser Cladding, Surf. Coat. Technol., 2013, 235, p 773–777. https://doi.org/10.1016/j.surfcoat.2013.09.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the National Natural Science Foundation of China (52065043), the Central Guidance on Local: Construction of regional innovation system-Cross Regional R & D cooperation projects (20221ZDH04054), Technology Innovation High Level Talent Project of Double Thousand Plan of Jiangxi Province (jxsq2019201048), Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX1346).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuewen Li or Wenqin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Tang, B., Wu, H. et al. Microstructure and Wear Behavior of AlCoCrFeNiTi0.5 High Entropy Alloy Coating Prepared by Electron Beam Cladding on Ti-6Al-4V Substrate. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08753-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08753-0

Keywords

Navigation