Skip to main content
Log in

Microstructures and thermal properties of Sn–Bi–Pb–Zn alloys as heat storage and transfer materials

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Low-melting-point alloy has the characteristics of high thermal conductivity, low solidus temperature and the wide range of use temperature, which is a potential heat transfer medium. The microstructure and thermal properties of Sn–Bi–Pb–Zn alloys as heat transfer and storage material were investigated in this paper. The phase compositions, microstructure and thermal properties were investigated by X-ray diffusion (XRD), electron probe microanalysis (EPMA) and differential scanning calorimeter (DSC) analysis, respectively. The results show that the phases of Sn–Bi–Zn and Sn–Pb–Zn alloys are mainly eutectic formed by solid solution, while the formation of Pb7Bi3 intermetallic compounds decreases the melting point of Sn–Bi–Pb and Bi–Pb–Zn. The thermal properties of the zinc-containing alloys are better than that of Sn–Bi–Pb, but the weight of the zinc-containing alloys significantly reduces above 900 °C. As the density, specific heat capacity and thermal diffusivity change with temperature and physical state, the thermal conductivity of the alloys first decreases and then increases. These results demonstrate the feasibility of using low-melting alloys as the heat transfer and storage material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reilly J, Paltsev S, Felzer B, Wang X, Kicklighter D, Melillo J, Prinn R, Sarofim M, Sokolov A, Wang C. Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone. Energy Policy. 2007;35(11):5370.

    Article  Google Scholar 

  2. Vignarooban K, Xu XH, Arvay A, Hsu K, Kannan AM. Heat transfer fluids for concentrating solar power systems—a review. Appl Energy. 2015;146(1):383.

    Article  CAS  Google Scholar 

  3. Lorenzin N, Abánades A. A review on the application of liquid metals as heat transfer fluid in concentrated solar power technologies. Int J Hydrogen Energy. 2016;41(17):6990.

    Article  CAS  Google Scholar 

  4. Chen YY, Zhao CY. Thermophysical properties of Ca(NO3)2–NaNO3–KNO3 mixtures for heat transfer and thermal storage. Sol Energy. 2017;146(1):172.

    Article  CAS  Google Scholar 

  5. Cheng XM, Li G, Yu GM, Li YY, Han JQ. Effect of expanded graphite and carbon nanotubes on the thermal performance of stearic acid phase change materials. J Mater Sci. 2017;52(20):12370.

    Article  CAS  Google Scholar 

  6. Zhu C, Cheng XM, Li YY, Tao BM. Influence of heat treatment on solidus temperature of NaNO3–KNO3 molten salt. Sol Energy. 2015;118(1):303.

    CAS  Google Scholar 

  7. Pei YZ, Zhou XY, Zhu TJ. Editorial for rare metals, special issue on advanced thermoelectric materials. Rare Met. 2018;37(4):257.

    Article  CAS  Google Scholar 

  8. Porteiro J, Miguez JL, Crespo B, Gonzalez LML, De Lara J. Experimental investigation of the thermal response of a thermal storage tank partially filled with different PCMs (phase change materials) to a steep demand. Energy. 2015;91(1):202.

    Article  Google Scholar 

  9. Ben X, Li P, Chan C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy. 2015;160(1):286.

    Google Scholar 

  10. Ge HS, Li HY, Mei SF, Liu J. Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area. Renew Sustain Energy Rev. 2013;21(5):331.

    Article  CAS  Google Scholar 

  11. Zhang Y, Li PW. Minimum system entropy production as the FOM of high temperature heat transfer fluids for CSP systems. Sol Energy. 2017;152(1):80.

    Article  CAS  Google Scholar 

  12. Aksoz S, Ocak Y, Marasli N, Keslioglu K. Determination of thermal conductivity and interfacial energy of solid Zn solution in the Zn–Al–Bi eutectic system. Exp Thermal Fluid Sci. 2011;35(2):395.

    Article  CAS  Google Scholar 

  13. Khatib Hisham. IEA World Energy Outlook 2010—a comment. Energy Policy. 2011;39(5):2507.

    Article  Google Scholar 

  14. Fukahori R, Nomura T, Zhu CY, Sheng N, Okinaka N, Akiyama T. Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials. Appl Energy. 2016;163(1):1.

    Article  CAS  Google Scholar 

  15. Blanco-Rodriguez P, Rodriguez-Aseguinolaza J, Risueno E, Tello M. Thermophysical characterization of Mg-51%Zn eutectic metal alloy: a phase change material for thermal energy storage in direct steam generation applications. Energy. 2014;75(7):414.

    Article  CAS  Google Scholar 

  16. Wang ZY, Wang H, Li XB, Wang DZ, Zhang QY, Chen G, Ren ZF. Aluminum and silicon based phase change materials for high capacity thermal energy storage. Appl Therm Eng. 2015;89(1):204.

    Article  CAS  Google Scholar 

  17. Risueno E, Faik A, Rodriguez-Aseguinolaza J, Blanco-Rodriguez P, Gil A, Tello M, D’Aguanno B. Mg–Zn–Al eutectic alloys as phase change material for latent heat thermal energy storage. Energy Procedia. 2015;69(1):1006.

    Article  CAS  Google Scholar 

  18. Frazer D, Stergar E, Cionea C, Hosemann P. Liquid metal as a heat transport fluid for thermal solar power applications. Energy Procedia. 2014;49(1):627.

    Article  CAS  Google Scholar 

  19. Fang D, Sun Z, Li YY, Cheng XM. Preparation, microstructure and thermal properties of Mg, Bi alloys as phase change materials for thermal energy storage. Appl Therm Eng. 2016;92(1):187.

    Article  CAS  Google Scholar 

  20. Kang H, Suh JY, Kang SW, Bae DH. Effect of Sn on thermal conductivity of Mg–5Zn based alloys. Mater Trans. 2015;56(7):1144.

    Article  CAS  Google Scholar 

  21. Kaya H, Engin S, Aker A, Buyuk U, Cadirli E. Microstructural, mechanical, electrical, and thermal properties of the Bi–Sn–Ag ternary eutectic alloy. J Wuhan Univ Technol. 2017;32(1):147.

    Article  CAS  Google Scholar 

  22. Wang JG, Liu HY, Liu HZ, Fu ZH, Nan D. Facile synthesis of microsized MnO/C composites with high tap density as high performance anodes for Li-ion batteries. Chem Eng J. 2017;328(1):591.

    Article  CAS  Google Scholar 

  23. Momeni MM. Dye-sensitized solar cells based on Cr-doped TiO2 nanotube photoanodes. Rare Met. 2017;36(11):865.

    Article  CAS  Google Scholar 

  24. Wang JG, Sun HH, Liu HY, Jin DD, Zhou R, Wei BQ. Edge-oriented SnS2 nanosheet arrays on carbon paper as advanced binder-free anodes for Li-ion and Na-ion batteries. J Mater Chem A. 2017;5(1):23115.

    Article  CAS  Google Scholar 

  25. Wang JG, Zhang ZY, Zhang XY, Yin XM, Li X, Liu XR, Kang FY, Wei BQ. Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy. 2017;39(1):647.

    Article  CAS  Google Scholar 

  26. Guo P, Shen Y, Song Y, Ma J, Lin YH, Nan CW. Self-etching Ni-Co hydroxides@Ni-Cu nanowire arrays with enhancing ultrahigh areal capacitance for flexible thin-film supercapacitors. Rare Met. 2017;36(9):691.

    Article  CAS  Google Scholar 

  27. Wang JG, Li HZ, Sun HH, Hua W, Wang HW, Liu XR, Wei BQ. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon. 2018;127(1):85.

    Article  CAS  Google Scholar 

  28. Yuan JW, Zhang K, Zhang XH, Li XG, Li T, Li YJ, Ma ML, Shi GL. Thermal characteristics of Mg–Zn–Mn alloys with high specific strength and high thermal conductivity. J Alloy Compd. 2013;578(6):32.

    Article  CAS  Google Scholar 

  29. Lan Z, Ma XH, Hao ZL, Jiang R. Experiments on saturated vapor pressure of aqueous lithium bromide solution at high temperatures. Int J Refrig. 2017;76(1):73.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Technology Research & Development Program of China (No. 2012BAA05B05), the Key Technology Research & Development Program of Hubei (No. 2015BAA111) and the Fundamental Research Funds for the Central Universities (No.WUT: 2017II23GX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Min Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QM., Cheng, XM., Li, YY. et al. Microstructures and thermal properties of Sn–Bi–Pb–Zn alloys as heat storage and transfer materials. Rare Met. 38, 350–358 (2019). https://doi.org/10.1007/s12598-019-01206-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01206-5

Keywords

Navigation