Skip to main content
Log in

Mechanism of high-temperature oxidation effects in fatigue crack propagation and fracture mode for FGH97 superalloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The high-temperature fatigue crack growth behaviors in powder metallurgy (P/M) Ni-based superalloy FGH97 for turbine disk application were investigated at different temperatures (650, 700 and 800 °C) in air using a combination a servohydraulic test system, fractographic and microanalytical investigations. It is found that there is a temperature-sensitive region in which the fatigue life of FGH97 alloy decreases sharply. To further evaluate the crack propagation mode and oxidation effects, interruption experiments were conducted at 700 and 300 °C, respectively. The results indicate that the reduction of the fatigue lifetime for FGH97 takes place when the fracture mechanism transforms from a predominantly transgranular mode to an intergranular one as the temperature increases. Although the microstructures and mechanical properties may vary with the temperature, they are not the dominating factors contributing to the temperature sensitivity of fatigue property for FGH97. It is the oxidation that governs the fatigue crack growth behaviors in air at elevated temperature. The enhanced thermal activity of oxygen and certain active metal elements result in accelerated oxidation reaction. The brittle oxide intrusions formed at the crack tip and grain boundaries of crack frontier lead to grain boundary weakness, which is responsible for the transformation of crack growth mode and degradation of the fatigue property of FGH97 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lee SY, Lu YL, Liaw PK, Chen LJ, Thompson SA. Tensile-hold low-cycle-fatigue properties of solid-solution-strengthened superalloys at elevated temperatures. Mater Sci Eng A. 2009;504(1):64.

    Article  Google Scholar 

  2. Jiang R, Bull DJ, Proprentner D, Shollock B, Reed P. Effects of oxygen-related damage on dwell-fatigue crack propagation in a P/M Ni-based superalloy: from 2D to 3D assessment. Int J Fatigue. 2017;99(1):175.

    Article  CAS  Google Scholar 

  3. Ning LK, Zheng Z, An FQ, Tang S, Tong J, Ji HS, Yu HW. Thermal fatigue behavior of K125L superalloy. Rare Met. 2016;35(2):172.

    Article  CAS  Google Scholar 

  4. Kitaguchi HS, Li HY, Evans HE, Ding RG, Jones IP. Oxidation ahead of a crack tip in an advanced Ni-based superalloy. Acta Mater. 2013;61(6):1968.

    Article  CAS  Google Scholar 

  5. Li SL, Qi HY, Yang XG. Oxidation-induced damage of an uncoated and coated nickel-based superalloy under simulated gas environment. Rare Met. 2018;37(3):204.

    Article  CAS  Google Scholar 

  6. Han ZX. Effects of temperature on thermal fatigue properties of some wrought superalloys. Gas Turbine Exp Res. 2007;20(4):53.

    Google Scholar 

  7. Osinkolu GA, Onofrio G, Marchionni M. Fatigue crack growth in polycrystalline IN718 superalloy. Mater Sci Eng A. 2003;356(1–2):425.

    Article  Google Scholar 

  8. Kruml T, Obrtlik K. Microstructure degradation in high temperature fatigue of TiAl alloy. Int J Fatigue. 2014;65:28.

    Article  CAS  Google Scholar 

  9. Krupp U, Kane WM, Liu X, Dueber O, Laird C. The effect of grain-boundary-engineering-type processing on oxygen-induced cracking of IN718. Mater Sci Eng A. 2003;349(1–2):213.

    Article  Google Scholar 

  10. Calvarin-Amiri G, Huntz AM, Molins R. Effect of an applied stress on the growth kinetics of oxide scales formed on Ni-20Cr alloys. Mater High Temp. 2001;18(2):91.

    CAS  Google Scholar 

  11. Miller CF, Simmons GW, Wei RP. Evidence for internal oxidation during oxygen enhanced crack growth in P/M Ni-based superalloys. Scr Mater. 2003;48(1):103.

    Article  CAS  Google Scholar 

  12. Tong J, Dalby S, Byrne J. Crack growth in a new nickel-based superalloy at elevated temperature—part III: characterisation. J Mater Sci. 2005;40(5):1229.

    Article  Google Scholar 

  13. Pfaendtner JA Jr, McMahon CJ. Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures—an example of dynamic embrittlement. Acta Mater. 2001;49(16):3369.

    Article  CAS  Google Scholar 

  14. Krupp U, Kane WM, Laird C, Mcmahon CJ. Brittle intergranular fracture of a Ni-base superalloy at high temperatures by dynamic embrittlement. Mater Sci Eng A. 2004;387(1):409.

    Article  Google Scholar 

  15. Karabela A, Zhao LG, Lin B, Tong J, Hardy MC. Oxygen diffusion and crack growth for a nickel-based superalloy under fatigue-oxidation conditions. Mater Sci Eng A. 2013;567(8):46.

    Article  CAS  Google Scholar 

  16. Zheng XL. On some basic problems of fatigue research in engineering. Int J Fatigue. 2001;23(9):751.

    Article  Google Scholar 

  17. Liu H, Bao R, Zhang JY, Fei BJ. A creep-fatigue crack growth model containing temperature and interactive effects. Int J Fatigue. 2014;59(3):34.

    Article  CAS  Google Scholar 

  18. Zhong Z, Gu Y, Yuan Y, Cui C, Yokokawa T. Fatigue crack growth behavior of a newly developed Ni-Co-base superalloy TMW-2 at elevated temperatures. Mater Sci Eng A. 2012;552(34):464.

    Article  CAS  Google Scholar 

  19. Nai QL, Dong JX, Zhang MC, Zheng L, Yao ZH. Fatigue behavior of powder metallurgy superalloy FGH97. Chin J Eng. 2016;28(2):248.

    Google Scholar 

  20. Zhang YW, Shangguan YH. Research and development in P/M superalloy. Power Metall Ind. 2004;14(6):30.

    CAS  Google Scholar 

  21. Nai QL, Dong JX, Zhang MC, Zheng L, Yao ZH, Qu JL. Temperature sensitivity of fatigue crack growth rate for GH4720Li alloy. Rare Metal Mater Eng. 2017;46(10):2915.

    Google Scholar 

  22. Starink MJ, Reed PAS. Thermal activation of fatigue crack growth: analysing the mechanisms of fatigue crack propagation in superalloys. Mater Sci Eng A. 2008;491(1–2):279.

    Article  Google Scholar 

  23. CSM. China Superalloys Handbook. Beijing: China Zhijian Publishing House; 2012. 878.

    Google Scholar 

  24. Lou J, Mercer C, Soboyejo WO. An investigation of the effects of temperature on fatigue crack growth in a cast lamellar Ti-45Al-2Mn-2Nb+0.8 vol.% TiB2 alloy. Mater Sci Eng A. 2001;319(1):618.

    Article  Google Scholar 

  25. Li HY, Sun JF, Hardy MC, Evans HE, Williams SJ. Effects of microstructure on high temperature dwell fatigue crack growth in a coarse grain P/M nickel based superalloy. Acta Mater. 2015;90:355.

    Article  CAS  Google Scholar 

  26. Jiang R, Everitt S, Lewandowski M, Gao N, Reed PAS. Grain size effects in a Ni-based turbine disc alloy in the time and cycle dependent crack growth regimes. Int J Fatigue. 2014;62(30):217.

    Article  CAS  Google Scholar 

  27. Lillo T, Cole J, Frary M, Schlegel S. Influence of grain boundary character on creep void formation in alloy 617. Metall Mater Trans A. 2009;40(12):2803.

    Article  Google Scholar 

  28. Sangid MD. The physics of fatigue crack initiation. Int J Fatigue. 2013;57(12):58.

    Article  CAS  Google Scholar 

  29. Prakash DGL, Walsh MJ, Maclachlan D, Korsunsky AM. Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue, creep and oxidation. Int J Fatigue. 2009;31(11):1966.

    Article  CAS  Google Scholar 

  30. Ghonem H, Nicholas T, Pineau A. Elevated temperature fatigue crack growth in alloy 718—part II: effects of environmental and material variables. Fatigue Fract Eng Mater Struct. 2010;16(6):577.

    Article  Google Scholar 

  31. Jiang R, Reed PAS. Critical assessment 21: oxygen-assisted fatigue crack propagation in turbine disc superalloys. Mater Sci Technol. 2016;32(5):401.

    Article  Google Scholar 

  32. Evans HE, Li HY, Bowen P. A mechanism for stress-aided grain boundary oxidation ahead of cracks. Scr Mater. 2013;69(2):179.

    Article  CAS  Google Scholar 

  33. Andrieu E, Molins R, Ghonem H, Pineau A. Intergranular crack tip oxidation mechanism in a nickel-based superalloy. Mater Sci Eng A. 1992;154(1):21.

    Article  Google Scholar 

  34. Molins R, Hochstetter G, Chassaigne JC, Andrieu E. Oxidation effects on the fatigue crack growth behaviour of alloy 718 at high temperature. Acta Mater. 1997;45(2):663.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51371023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hao Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Yao, ZH., Dong, JX. et al. Mechanism of high-temperature oxidation effects in fatigue crack propagation and fracture mode for FGH97 superalloy. Rare Met. 38, 642–652 (2019). https://doi.org/10.1007/s12598-018-1123-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1123-x

Keywords

Navigation