Skip to main content
Log in

Quantitative microstructure and fatigue life of B319 casting alloys

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this study, the microstructure of B319 casting alloys and effects of five different casting conditions on microstructure were studied. Multi-scale microstructure was quantified in terms of secondary dendrite arm spacing (SDAS), and Si particle size and aspect ratio. The effects of SDAS, Si aspect ratio and size on fatigue life were analyzed. The results indicate that the size and aspect ratio of Si particles are a function of SDAS which is dependent on cooling rate during solidification. The fatigue life decreases with SDAS increasing as SDAS is smaller than 30 μm while it increases with SDAS increasing as SDAS is larger than 60 μm. In addition, the fatigue life decreases with Si aspect ratio and size increasing at the same SDAS. Moreover, SDAS and Si particles have also influence on fatigue fracture, such as the area of cracks propagation region and the roughness of fatigue fracture. The cracks propagation area is smaller, and the fatigue fracture is similar to tensile fracture with larger SDAS. Besides, the longitudinal section of fatigue fracture is rougher with large SDAS and elongated Si particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ceschini L, Morri A, Morri A, Gamberini A, Messieri S. Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminium alloy. Mater Des. 2009;30(10):4525.

    Article  Google Scholar 

  2. Mo DF, He GQ, Hu ZF, Liu XS, Zhang WH. Effect of microstructural features on fatigue behavior in A319-T6 aluminum alloy. Mater Sci Eng A. 2010;527(15):3420.

    Article  Google Scholar 

  3. Joseph S, Kumar S. A systematic investigation of fracture mechanisms in Al–Si based eutectic alloy—effect of Si modification. Mater Sci Eng A. 2013;588(12):111.

    Article  Google Scholar 

  4. Ovono DO, Guillot I, Massinon D. Study on low-cycle fatigue behaviours of the aluminium cast alloys. J Alloys Compd. 2008;452(2):425.

    Article  Google Scholar 

  5. Dobrzanski LA, Maniara R, Sokolowski JH. The effect of cooling rate on microstructure and mechanical properties of AC AlSi9Cu alloy. Arch Mater Sci Eng. 2007;28(2):105.

    Google Scholar 

  6. Wang QG, Apelian D, Lados DA. Fatigue behavior of A356/357 aluminum cast alloys. Part II-Effect of microstructural constituents. J Light Met. 2001;1(1):85.

    Article  Google Scholar 

  7. Wang QG, Cáceres CH. Mg effects on the eutectic structure and tensile properties of Al–Si–Mg alloys. Mater Sci Forum. 1997;242:159.

    Article  Google Scholar 

  8. Wang QG. Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metall Mater Trans A. 2003;34(12):2887.

    Article  Google Scholar 

  9. Zhang B, Poirier DR, Chen W. Microstructural effects on high-cycle fatigue-crack initiation in A356. 2 casting alloy. Metall Mater TransA. 1999;30(10):2659.

    Article  Google Scholar 

  10. Islam MA, Farhat ZN. The influence of porosity and hot isostatic pressing treatment on wear characteristics of cast and P/M aluminum alloys. Wear. 2011;271(9):1594.

    Article  Google Scholar 

  11. Xu Z, Wen W, Zhai T. Effects of pore position in depth on stress/strain concentration and fatigue crack initiation. Metall Mater Trans A. 2012;43(8):2763.

    Article  Google Scholar 

  12. Ammar HR, Samuel AM, Samuel FH. Porosity and the fatigue behavior of hypoeutectic and hypereutectic aluminum–silicon casting alloys. Int J Fatigue. 2008;30(6):1024.

    Article  Google Scholar 

  13. Arami H, Khalifehzadeh R, Akbari M, Khomamizadeh F. Microporosity control and thermal-fatigue resistance of A319 aluminum foundry alloy. Mater Sci Eng A. 2008;472(1):107.

    Article  Google Scholar 

  14. Ammar HR, Samuel AM, Samuel FH. Effect of casting imperfections on the fatigue life of 319-F and A356-T6 Al–Si casting alloys. Mater Sci Eng A. 2008;473(1):65.

    Article  Google Scholar 

  15. Wang QG, Apelian D, Lados DA. Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects. J Light Met. 2001;1(1):73.

    Article  Google Scholar 

  16. El Sebaie O, Samuel AM, Samuel FH, Doty HW. The effects of mischmetal, cooling rate and heat treatment on the eutectic Si particle characteristics of A319. 1, A356. 2 and A413. 1 Al–Si casting alloys. Mater Sci Eng A. 2008;480(1):342.

    Article  Google Scholar 

  17. Farhang Mehr F, Reilly C, Cockcroft S, Maijer D, MacKay R. Effect of chill cooling conditions on cooling rate, microstructure and casting/chill interfacial heat transfer coefficient for sand cast A319 alloy. Int J Cast Met Res. 2014;27(5):288.

    Article  Google Scholar 

  18. Shabestari SG, Malekan M. Thermal analysis study of the effect of the cooling rate on the microstructure and solidification parameters of 319 aluminum alloy. Can Metall Q. 2005;44(3):305.

    Article  Google Scholar 

  19. Firouzdor V, Rajabi M, Nejati E, Khomamizadeh F. Effect of microstructural constituents on the thermal fatigue life of A319 aluminum alloy. Mater Sci Eng A. 2007;454(16):528.

    Article  Google Scholar 

  20. Mi GF, Liu XY, Zhu ZJ, Wang HW. Effects of chill casting processes on secondary dendrite arm spacing and densification of Al–Si–Mg alloy. Trans Nonferrous Met Soc China. 2007;17(5):1012.

    Article  Google Scholar 

  21. Hosseini VA, Shabestari SG, Gholizadeh R. Study on the effect of cooling rate on the solidification parameters, microstructure, and mechanical properties of LM13 alloy using cooling curve thermal analysis technique. Mater Des. 2013;50(17):7.

    Article  Google Scholar 

  22. Elmquist L, Dioszegi A. Relation between SDAS and eutectic cell size in grey iron. Int J Cast Met Res. 2010;23(4):240.

    Article  Google Scholar 

  23. Shaha SK, Czerwinski F, Kasprzak W, Friedman J, Chen DL. Effect of solidification rate and loading mode on deformation behavior of cast Al–Si–Cu–Mg alloy with additions of transition metals. Mater Sci Eng A. 2015;636(1):361.

    Article  Google Scholar 

  24. Lados DA. Fatigue crack growth mechanisms in Al–Si–Mg alloys. Surf Eng. 2004;20(6):416.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 50771073) and General Motors Funded Project (No. 1314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Shan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Liu, XS., He, GQ. et al. Quantitative microstructure and fatigue life of B319 casting alloys. Rare Met. 36, 780–791 (2017). https://doi.org/10.1007/s12598-016-0863-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0863-8

Keywords

Navigation