Skip to main content
Log in

Sonochemical synthesis, characterization, and magnetic properties of Mn-doped ZnO nanostructures

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Mn-doped ZnO samples, Zn1–xMnxO (x = 0, 0.01, 0.03 and 0.05; mole fraction), were successfully synthesized by sonochemical method. The undoped and Mn-doped ZnO samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. XRD patterns of all products are identified to hexagonal wurtzite ZnO structure and their three main peaks shift toward lower diffraction angles due to the incorporation of Mn2+ into ZnO crystal lattice. The morphologies of Zn1–xMnxO (x = 0, 0.01, 0.03 and 0.05) were examined by SEM and TEM. The undoped ZnO sample shows large-scale uniform microflowers which are broken into nanorods and nanoparticles by Mn dopant. Their magnetic properties were investigated by a vibrating sample magnetometer at room temperature. The magnetization-applied field behavior of undoped ZnO defines its weak ferromagnetic behavior. The 3 mol% Mn-doped ZnO shows the highest saturation magnetization of 51.73 × 10−3 mA·m2·g−1, and the 5 mol% Mn-doped ZnO has suppressed ferromagnetic property due to the formation of Mn clusters inside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li J, Fan H, Chen X, Cao Z. Structural and photoluminescence of Mn-doped ZnO single-crystalline nanorods grown via solvothermal method. Colloid Surf A. 2009;349(1–3):202.

    Article  CAS  Google Scholar 

  2. Thongtem T, Phuruangrat A, Thongtem S. Characterization of nanostructured ZnO produced by microwave irradiation. Ceram Int. 2010;36(1):257.

    Article  CAS  Google Scholar 

  3. Phuruangrat A, Thontem T, Thongtem S. Microwave-assisted synthesis of ZnO nanostructure flowers. Mater Lett. 2009;63(13–14):1224.

    Article  CAS  Google Scholar 

  4. Thongtem T, Jattukul S, Phuruangrat A, Thontem S. The effect of H2O and PEG on the morphologies of ZnO nanostructures synthesized under microwave radiation. J Alloys Compd. 2010;491(1–2):654.

    Article  CAS  Google Scholar 

  5. Wang SL, Jia X, Jiang P, Fang H, Tang WH. Large-scale preparation of chestnut-like ZnO and Zn–ZnO hollow nanostructures by chemical vapor deposition. J Alloys Compd. 2010;502(1):118.

    Article  CAS  Google Scholar 

  6. Chen W, Zhao LF, Wang YQ, Miao JH, Liu S, Xia ZC, Yuan SL. Magnetism in Mn-doped ZnO bulk samples. Solid State Commun. 2005;134(12):827.

    Article  CAS  Google Scholar 

  7. Wu ZF, Wu XM, Zhuge LJ, Hong B, Yang XM, Yu T, He JJ, Chen Q. Effect of Mn doping on the nanostructure and optical properties of ZnO films synthesized by magnetron sputtering. Appl Surf Sci. 2010;256(7):2259.

    Article  CAS  Google Scholar 

  8. Shinde VR, Gujar TP, Lokhande CD, Mane RS, Han SH. Mn doped and undoped ZnO films: a comparative structural, optical and electrical properties study. Mater Chem Phys. 2006;96(2–3):326.

    Article  CAS  Google Scholar 

  9. Dietl T, Ohno H, Matsukuru F, Cibrt J, Ferrand D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 2010;287(5455):1019.

    Article  Google Scholar 

  10. Yang M, Guo Z, Qiu K, Long J, Yin G, Guan D, Liu S, Zhou S. Synthesis and characterization of Mn-doped ZnO column arrays. Appl Surf Sci. 2010;256(13):4201.

    Article  CAS  Google Scholar 

  11. Yuan M, Fu W, Yang H, Yu Q, Liu S, Zhao Q, Sui Y, Ma D, Sun P, Zhang Y, Luo B. Structural and magnetic properties of Mn-doped ZnO nanorod arrays grown via a simple hydrothermal reaction. Mater Lett. 2009;63(18–19):1574.

    Article  CAS  Google Scholar 

  12. Deka S, Joy PA. Synthesis and magnetic properties of Mn doped ZnO nanowires. Solid State Commun. 2007;142(4):190.

    Article  CAS  Google Scholar 

  13. Zhang Y, Shi EW, Chen ZZ. Synthesis and magnetic properties of Mn-doped ZnO hollow nanospheres. J Cryst Growth. 2008;310(11):2928.

    Article  CAS  Google Scholar 

  14. Lang J, Han Q, Li C, Yang J, Li X, Yang L, Wang D, Zhai H, Gao M, Zhang Y, Liu X, Wei M. Effect of Mn doping on the microstructures and photoluminescence properties of CBD derived ZnO nanorods. Appl Surf Sci. 2010;256(11):3365.

    Article  CAS  Google Scholar 

  15. Shuang D, Wang JB, Zhong XL, Yan HL. Raman scattering and cathodoluminescence properties of flower-like manganese doped ZnO nanorods. Mater Sci Semicond Process. 2007;10(2–3):97.

    Article  CAS  Google Scholar 

  16. Huang SH, Chen Z, Shen XC, Zhu ZQ, Yu K. Raman scattering of single tetrapod-like ZnO nanostructure synthesized by catalyst-free rapid evaporation. Solid State Commun. 2008;145(7–8):418.

    Article  CAS  Google Scholar 

  17. Yang LL, Yang JH, Wang DD, Zhang YJ, Wang YX, Liu HL, Fan HG, Lang JH. Photoluminescence and Raman analysis of ZnO nanowires deposited on Si(100) via vapor–liquid–solid process. Phys E. 2008;40(4):920.

    Article  CAS  Google Scholar 

  18. Huang GJ, Wang JB, Zhong XL, Zhou GC, Yan HL. Ferromagnetism of Mn-doped ZnO nanoparticles prepared by sol-gel process at room temperature. Optoelectron Lett. 2006;2(6):439.

    Article  Google Scholar 

  19. Mavrin BN, Demyanets LN, Zakalukin RM. Raman spectroscopy and Fermi resonance in Mn-doped ZnO bulk single crystal. Phys Lett A. 2010;374(39):4054.

    Article  CAS  Google Scholar 

  20. Zhang YH, Guo LL, Shen WZ. Study on the Raman scattering measurements of Mn ion implanted GaN. Mater Sci Eng B. 2006;130(1–3):269.

    Article  CAS  Google Scholar 

  21. Schumm M, Koerdel M, Müller S, Zutz H, Ronning C, Stehr J, Hofmann DM, Geurts J. Structural impact of Mn implantation on ZnO. New J Phys. 2008;10(4):043004.

    Article  Google Scholar 

  22. Baruah S, Dutta J. Hydrothermal growth of ZnO Nanostructures. Sci Technol Adv Mater. 2009;10(1):013001.

    Article  Google Scholar 

  23. Wang ZL. ZnO nanowire and nanobelt platform for nanotechnology. Mater Sci Eng R. 2009;64(3–4):33.

    Article  Google Scholar 

  24. Umar A, Rahman MM, Hajay AA, Hahn YB. Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. Talanta. 2009;78(1):284.

    Article  CAS  Google Scholar 

  25. Zhang J, Liu H, Wang Z, Ming N. Synthesis and band gap of ZnO particles with hexagonal bilayer structure. Appl Phys Lett. 2007;90(11):113117.

    Article  Google Scholar 

  26. Balamurali S, Chandramohan R, Suriyamurthy N, Parameswaran P, Karunakaran M, Dhanasekaran V, Mahalingam T. Optical and magnetic properties of Mn doped ZnO thin films grown by SILAR method. J Mater Sci Mater Electron. 2013;24(6):1782.

    Article  CAS  Google Scholar 

  27. Singh AK. Synthesis and band gap of ZnO particles with hexagonal bilayer structure. J Optoelectron Adv Mater. 2010;12(11):2255.

    CAS  Google Scholar 

  28. El-Hilo E, Dakhel AA. Structural and magnetic properties of Mn-doped ZnO powders. J Magn Magn Mater. 2011;323(16):2202.

    Article  CAS  Google Scholar 

  29. Chapler BC, Mack S, Myers RC, Frenzel A, Pursley BC, Burch KS, Dattelbaum AM, Samarth N, Awschalom DD, Basov DN. Ferromagnetism and infrared electrodynamics of Ga1−xMnxAs. Phys Rev B. 2013;87(20):205314.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research University (NRU) Project for Chiang Mai University and Bansomdejchaopraya Rajabhat University (BSRU) Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anukorn Phuruangrat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekthammathat, N., Phuruangrat, A., Phonkhokkong, T. et al. Sonochemical synthesis, characterization, and magnetic properties of Mn-doped ZnO nanostructures. Rare Met. 40, 1–6 (2021). https://doi.org/10.1007/s12598-016-0857-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0857-6

Keywords

Navigation