Skip to main content
Log in

Microstructure and tribological properties of carburized 95W–3.5Ni–1.0Fe–0.5Co heavy alloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Tungsten heavy alloys (WHAs) produced by powder technology are widely used for the mechanical manufacturing, electronic and defense components, etc. Tribological properties of these alloys need to be improved to meet the severe service conditions demanded. Carburization is a promising way to resolve this problem. In this work, microstructure and tribological properties of the carburized 95W–3.5Ni–1.0Fe–0.5Co heavy alloy were investigated in comparison with those of the untreated alloy. Results show that the carburized layer consists of a porous, outer WC layer and a modified W grain layer surrounded by Fe6W6C and Co6W6C at 970 °C, regardless of the carburizing time. The depth of the carburized layer linearly increases in a relatively short time and slightly increases during the subsequent period. Surface roughness increases with carburizing time. Carburization can stabilize friction coefficient and effectively improve the wear resistance of the tungsten heavy alloy due to its significantly increased hardness and non-deformability, but the porous structure in the WC layer has a negative influence on its wear resistance. The carburized layer is damaged in the porous WC layer in the form of the spalling of WC particles where there are some microcracks and micropores, accompanied with peeling due to the solid tribofilm being pushed away.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li YY, Hu K, Li XQ, Ai X, Qu ShQ. Fine-grained 93W–5.6Ni–1.4Fe heavy alloys with enhanced performance prepared by spark plasma sintering. Mater Sci Eng A. 2013;599(573):245.

    Article  CAS  Google Scholar 

  2. Hong SH, Ryu HJ. Combination of mechanical alloying and two-stage sintering of a 93W–5.6Ni–1.4Fe tungsten heavy alloy. Mater Sci Eng A. 2003;344(1–2):253.

    Article  Google Scholar 

  3. Hu K, Li XQ, Qu ShG, Li YY. Spark-plasma sintering of W–5.6Ni–1.4Fe heavy alloys: densification and grain growth. Metall Mater Trans A. 2013;44(2):923.

    Article  CAS  Google Scholar 

  4. Khalid FA. Characterization of in situ carbide coating of tungsten alloy. Mater Sci Eng A. 2002;338(1):76.

    Article  Google Scholar 

  5. Luo A, Shin KS, Jacobson DL. High temperature tensile properties of W–Re–ThO2 alloys. Mater Sci Eng A. 1992;150(1):67.

    Article  Google Scholar 

  6. Hsu C, Lin S. Coalescence of tungsten grains around molybdenum grains in the presence of a liquid phase. Scr Mater. 2002;46(12):869.

    Article  CAS  Google Scholar 

  7. Kemp PB, German RM. Mechanical properties of molybdenum alloyed liquid phase-sintered tungsten-based composites. Metall Mater Trans A. 1995;26(8):2187.

    Article  Google Scholar 

  8. Bose A, German RM. Microstructural refinement of W–Ni–Fe heavy alloys by alloying additions. Metall Mater Trans A. 1988;19(12):3100.

    Article  Google Scholar 

  9. Liu M, Cowley J. Particle/dislocation interactions in a dispersion strengthened tungsten alloy at ultrahigh temperatures. Scr Metall Mater. 1993;28(3):307.

    Article  CAS  Google Scholar 

  10. Park S, Kim D, Lee S, Ryu HJ, Hong SH. Dynamic deformation behavior of an oxide-dispersed tungsten heavy alloy fabricated by mechanical alloying. Metall Mater Trans A. 2001;32(8):2011.

    Article  Google Scholar 

  11. Ryu HJ, Hong SH. Fabrication and properties of mechanically alloyed oxide-dispersed tungsten heavy alloys. Mater Sci Eng A. 2003;363(1–2):179.

    Article  CAS  Google Scholar 

  12. Wu GC, You Q, Wang D. Influence of the addition of lanthanum on a W–Mo–Ni–Fe heavy alloy. Int J Refract Met Hard Mater. 1999;17(4):299.

    Article  CAS  Google Scholar 

  13. Zhang ZH, Wang FC, Li SK, Wang L. Deformation characteristics of the 93W–4.9Ni–2.1Fe tungsten heavy alloy deformed by hydrostatic extrusion. Mater Sci Eng A. 2006;s435–436(6):632.

    Article  CAS  Google Scholar 

  14. Hong SH, Ryu HJ. Combination of mechanical alloying and two-stage sintering of a 93W–5.6Ni–1.4Fe tungsten heavy alloy. Mater Sci Eng A. 2003;344(1–2):253.

    Article  Google Scholar 

  15. Upadhyaya A, Tiwari SK. Microwave sintering of W–Ni–Fe alloy. Scr Mater. 2007;56(1):5.

    Article  CAS  Google Scholar 

  16. Song X, Liu X, Zhang J. Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering. J Am Ceram Soc. 2006;89(2):494.

    Article  CAS  Google Scholar 

  17. Hu K, Li XQ, Qu SG, Li YY. Effect of heating rate on densification and grain growth during spark plasma sintering of 93W–5.6Ni–1.4Fe heavy alloys. Metall Mater Trans A. 2013;44(9):4323.

    Article  CAS  Google Scholar 

  18. Etsion I, Halperin G, Becker E. The effect of various surface treatments on piston pin scuffing resistance. Wear. 2006;261(7–8):785.

    Article  CAS  Google Scholar 

  19. Pehlivanturk NY, Inal OT. Carburising of tungsten in a glow discharge methane plasma. In: Spalvins T, editor. Ion Nitriding. ASM International: Ohio; 1987. 179.

    Google Scholar 

  20. Eroglu S, Ekren H, Baykara T. Surface hardening of tungsten heavy alloys. Scr Mater. 1998;38(1):131.

    Article  CAS  Google Scholar 

  21. Ollis DF, Boudart M. Surface and bulk carburization of tungsten single crystals. Surf Sci. 1970;23(2):320.

    Article  CAS  Google Scholar 

  22. Okoli S, Haubner R, Lux B. Carburization of tungsten and tantalum filaments during low-pressure diamond deposition. Surf Coat Tech. 1991;47(1–3):585.

    Article  CAS  Google Scholar 

  23. Jung SW, Kim DK, Lee S, Noh JW, Kang SJ. Effect of surface carburization on dynamic deformation and fracture of tungsten heavy alloys. Metall Mater Trans A. 1999;30A(8):2027.

    Article  CAS  Google Scholar 

  24. Qi XW, Jia ZhN, Yang YL, Fan BL. Characterization and auto-restoration mechanism of nanoscale serpentine powder as lubricating oil additive under high temperature. Tribol Int. 2011;44(7–8):805.

    Article  CAS  Google Scholar 

  25. Das J, Rao GA, Pabi SK. Microstructure and mechanical properties of tungsten heavy alloys. Mater Sci Eng A. 2010;527(s29–30):7841.

    Article  CAS  Google Scholar 

  26. Cetinkaya S, Eroglu S. Thermodynamic analysis and effect of temperature on surface hardening of tungsten heavy alloys using ethanol. J Alloys Compd. 2015;632:161.

    Article  CAS  Google Scholar 

  27. Gao L, Kear BH. Low temperature carburization of high surface area tungsten powders. Nanostruct Mater. 1995;5(5):555.

    Article  CAS  Google Scholar 

  28. Tsuchida T, Morita N. Formation of ternary carbide Co6W6C by mechanical activation assisted solid-state reaction. J Eur Ceram Soc. 2002;22(13):2401.

    Article  CAS  Google Scholar 

  29. Chou MCh, Chu ChF, Wu ShT. Phase transformations of electroplated amorphous iron–tungsten–carbon film. Mater Chem Phys. 2002;78(1):59.

    Article  CAS  Google Scholar 

  30. Dubrovinskaia NA, Dubrovinsky LS, Saxena SK, Selleby M, Sundman B. Thermal expansion and compressibility of Co6W6C. J Alloys Compd. 1999;285(1–2):242.

    Article  CAS  Google Scholar 

  31. Suetin DV, Shein IR, Ivanovskii AL. Structural, electronic and magnetic properties of η carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first principles calculations. Phys B. 2009;404(20):3544.

    Article  CAS  Google Scholar 

  32. Zafar S, Sharma AK. Development and characterizations of WC–12Co microwave clad. Mater Charact. 2014;96(96):241.

    Article  CAS  Google Scholar 

  33. Bock A, Zeiler B. Production and characterization of ultrafine WC powders. Int J Refract Met Hard Mater. 2002;20(1):23.

    Article  CAS  Google Scholar 

  34. Wang GH, Qu ShG, Lai FQ, Li XQ, Fu ZhQ, Yue W. Rolling contact fatigue and wear properties of 0.1C–3Cr–2W–V nitrided steel. Int J Fatigue. 2015;77:105.

    Article  CAS  Google Scholar 

  35. Cui XH, Wang SQ, Wang F, Chen KM. Research on oxidation wear mechanism of the cast steels. Wear. 2008;265(S3–4):468.

    Article  CAS  Google Scholar 

  36. Sun Y, Bell T. Sliding wear characteristics of low temperature plasma nitrided 316 austenitic stainless steel. Wear. 1998;218(1):34.

    Article  CAS  Google Scholar 

  37. Wang L, Xu B, Yu ZhW, Shi QY. The wear and corrosion properties of stainless steel nitrided by low-pressure plasma-arc source ion nitriding at low temperatures. Surf Coat Technol. 2000;130(2):304.

    Google Scholar 

  38. Alsaran A. Determination of tribological properties of ion-nitrided AISI 5140 steel. Mater Charact. 2002;49(2):171.

    Article  CAS  Google Scholar 

  39. Akagaki T, Rigney DA. Sliding friction and wear of metals in vacuum. Wear. 1991;149(1–2):353.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Advanced Research Fund of Department of Defense, China (No. 9140A18070114JW16001), and Guangdong Natural Science Foundation (No. 2015A030310170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, SG., Wang, GH., Yang, ZX. et al. Microstructure and tribological properties of carburized 95W–3.5Ni–1.0Fe–0.5Co heavy alloy. Rare Met. 38, 165–172 (2019). https://doi.org/10.1007/s12598-016-0850-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0850-0

Keywords

Navigation