Skip to main content
Log in

Dry-sliding tribological properties of AlCoCrFeNiTi0.5 high-entropy alloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs), with a new alloying concept, could possess many unique mechanical and functional properties. The current work investigated whether one such alloy offers potential for bearing surfaces under dry conditions. The dry, reciprocating sliding wear characteristics of AlCoCrFeNiTi0.5 alloy were investigated under various applied loads and sliding speeds. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were utilized to characterize internal structure and wear surfaces of the alloy, respectively. It is found that the AlCoCrFeNiTi0.5 alloy preserves better wear resistance than Fe77Ni23 solid solution alloy, Ti-46Al-2Cr-2Nb intermetallic alloy, or a wear-resistant steel AISI 52100, especially under higher loads. The wear rate increases slowly with the applied loads increasing and keeps steady under different sliding speeds. The wear mechanisms are abrasive wear, adhesive wear and oxidative wear. The nano-sized Fe–Cr solid solution and Al–Ni–Ti rich intermetallic phase precipitated in the dendritic regions and the formation of oxidation play important roles in the good wear resistances of this high-entropy alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(6201):1153.

    Article  CAS  Google Scholar 

  2. Lu YP, Dong Y, Guo S, Jiang L, Kang HJ, Wang TM, Wen B, Wang ZJ, Jie J, Cao ZQ, Ruan HH, Li TJ. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2014;. doi:10.1038/srep06200.

    Article  Google Scholar 

  3. Liu XT, Lei WB, Li J, Ma Y, Wang WM, Zhang BH, Liu CS, Cui JZ. Laser cladding of high-entropy alloy on H13 steel. Rare Met. 2014;33(6):727.

    Article  CAS  Google Scholar 

  4. Yu Y, Wang J, Li JS, Kou HC, Duan HT. Li Jian, Liu WM. Tribological behavior of AlCoCrCuFeNi and AlCoCrFeNiTi0.5 high entropy alloys under hydrogen peroxide solution against different counterparts. Tribol Int. 2015;92:203.

    Article  CAS  Google Scholar 

  5. Tsai MH, Yeh JW. High-entropy alloys: a critical review. Mater Res Lett. 2014;2(3):107.

    Article  Google Scholar 

  6. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1.

    Article  Google Scholar 

  7. Tong CJ, Chen MR, Chen SK, Yeh JW, Shun TT, Lin SJ, Chang SY. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A. 2005;36(5):1263.

    Article  Google Scholar 

  8. Wu JM, Lin SJ, Yeh JW, Chen SK, Huang YS, Chen HC. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear. 2006;261(5–6):513.

    Article  CAS  Google Scholar 

  9. Chen MR, Lin SJ, Yeh JW, Chen SK, Huang YS, Chuang MH. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall Mater Trans A. 2006;37(5):1363.

    Article  Google Scholar 

  10. Duan H, Wu Y, Hua M, Yuan C, Wang D, Tu J, Kou HC, Li J. Tribological properties of AlCoCrFeNiCu high-entropy alloy in hydrogen peroxide solution and in oil lubricant. Wear. 2013;297(1–2):1045.

    Article  CAS  Google Scholar 

  11. Yu Y, Liu WM, Zhang TB, Li JS, Wang J, Kou HC, Li J. Microstructure and tribological properties of AlCoCrFeNiTi0.5 high-entropy alloy in hydrogen peroxide solution. Metall Mater Trans A. 2014;45(1):201.

    Article  CAS  Google Scholar 

  12. Zeng Q, Dong G. Influence of load and sliding speed on super-low friction of nitinol 60 alloy under castor oil lubrication. Tribol Lett. 2013;52(1):47.

    Article  CAS  Google Scholar 

  13. He L, Tan YF, Wang XL, Jing QF, Hong X. Tribological properties of laser cladding TiB2 particles reinforced Ni-base alloy composite coatings on aluminum alloy. Rare Met. 2015;33(11):89.

    Google Scholar 

  14. Zhou YJ, Zhang Y, Wang YL, Chen GL. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl Phys Lett. 2007;90(18):181904.

    Article  Google Scholar 

  15. Yu Y, Wang J, Li JS, Kou HC, Liu WM. Characterization of BCC phases in AlCoCrFeNiTix high entropy alloys. Mater Lett. 2015;138(11):78.

    Article  CAS  Google Scholar 

  16. Ren B, Zhao RF, Liu ZX, Guan SK, Zhang HS. Microstructure and properties of Al0.3CrFe1.5MnNi0.5Tix and Al0.3CrFe1.5Mn-Ni0.5Six high-entropy alloys. Rare Met. 2014;33(2):149.

    Article  CAS  Google Scholar 

  17. Cheng J, Yu Y, Fu LC, Li F, Qiao ZH, Li JS, Yang J, Liu WM. Effect of TiB2 on dry-sliding tribological properties of TiAl intermetallics. Tribol Int. 2013;62:91.

    Article  CAS  Google Scholar 

  18. Kang YH, Yang J, Ma JQ, Fu LC, Bi QL, Li F, Liu WM. Dry-sliding tribological behavior of Fe–Ni alloys. Tribol Int. 2012;51:11.

    Article  CAS  Google Scholar 

  19. Yuan BG, Yu HP, Li CF, Sun DL. Wear properties of nonhydrogenated, hydrogenated, and dehydrogenated Ti6Al4V alloy. Rare Met. doi:10.1007/s12598-014-0253-z.

  20. Yang ZR, Sun Y, Li XX, Wang SQ, Mao TJ. Dry sliding wear performance of 7075 Al alloy under different temperatures and load conditions. Rare Met. doi:10.1007/s12598-015-0504-7.

  21. Ashbys MF, Bulawij A, Kong HS. Temperature maps for frictional heating in dry sliding. Tribol T. 1991;34(4):577.

  22. Gao Y, Jie JC, Zhang PC, Zhang J, Wang TM, Li TJ. Wear behavior of high strength and high conductivity Cu alloys under dry sliding. T Nonferr Metals Soc. 2015;25(7):2293.

  23. Shi YN, Han Z. Tribological behaviors of nanostructured surface layer processed by means of surface mechanical attrition treatment. Key Eng Mat. 2008;384(01):321.

    Article  CAS  Google Scholar 

  24. Liu HH, Wang J, Shen BL, Yang HS, Gao SJ, Huang SJ. Effects of deep cryogenic treatment on property of 3Cr13Mo1V1.5 high chromium cast iron. Mater Des. 2007;28(3):1059–60.

    Article  CAS  Google Scholar 

  25. Colaco R, Vilar R. On the influence of retained austenite in the abrasive wear behaviour of a laser surface melted tool steel. Wear. 2005;258(1–4):225.

    Article  CAS  Google Scholar 

  26. Zhang YS, Wang K, Han Z, Liu G. Dry sliding wear behavior of copper with nano-scaled twins. Wear. 2007;262(11–12):1463.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51271151) and the Program of Introducing Talents of Discipline to Universities (No. B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Shan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wang, J., Li, JS. et al. Dry-sliding tribological properties of AlCoCrFeNiTi0.5 high-entropy alloy. Rare Met. 41, 4266–4272 (2022). https://doi.org/10.1007/s12598-016-0815-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0815-3

Keywords

Navigation