Skip to main content
Log in

Rapidly counting atomic planes of ultra-thin MoSe2 nanosheets (1 ≤ n ≤ 4) on SiO2/Si substrate

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The optical, thermal and electrical properties of ultra-thin two-dimensional (2D) crystal materials are highly related to their thickness. Therefore, identifying the atomic planes of few-layer crystal materials rapidly is crucial to fundamental study. Here, a simple technique was demonstrated based on optical contrast for counting atomic planes (n) of few-layer MoSe2 on SiO2/Si substrates. It is found that the optical contrast of single-layer MoSe2 depends on light wavelength and thickness of SiO2 on Si substrate. The data calculated based on a Fresnel law-based model as well as atomic force microscopy (AFM) measurements fit well with the values measured by spectroscopic ellipsometer. Furthermore, the calculated and measured contrasts were integral and plotted, which can be used to determine the MoSe2 atomic planes (1 ≤ n ≤ 4) accurately and rapidly.

Graphical Abstract

The optical contrast of thin-layer (1 ≤ n ≤ 4) MoSe2 sample was calculated by Fresnel’s law, and the contrast was measured by OM image. By combining these two group data, a function of layer numbers and contrast was developed: C (contrast) = 0.07N + 0.177. This proves that contrast is linear to layer numbers of MoSe2 when layer number is less than 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.

    Article  Google Scholar 

  2. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183.

    Article  Google Scholar 

  3. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys. 2009;81(1):109.

    Article  Google Scholar 

  4. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano. 2010;4(5):2695.

    Article  Google Scholar 

  5. Sun JF, Cheng F. Spin and valley transport in monolayers of MoS2. J Appl Phys. 2014;115(13):133703.

    Article  Google Scholar 

  6. Nath M, Govindaraj A, Rao CNR. Simple synthesis of MoS2 and WS2 nanotubes. Adv Mater. 2001;13(4):283.

    Article  Google Scholar 

  7. Matte HS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CN. MoS2 and WS2 analogues of graphene. Angew Chem. 2010;49(24):4059.

    Article  Google Scholar 

  8. Huang CM, Wu SF, Sanchez AM, Peters JJP, Beanland R, Ross JS, Rivera P, Yao W, Cobden DH, Xu XD. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat Mater. 2014;13(12):1096.

    Article  Google Scholar 

  9. Zhang HM, He XB, Qu XH, Liu Q, Shen XY. Microstructure and thermal properties of copper matrix composites reinforced with titanium-coated graphite fibers. Rare Met. 2013;32(1):75.

    Article  Google Scholar 

  10. Xu HT, He DW, Fu M, Wang WS, Wu HP, Wang YS. Optical identification of MoS2/graphene heterostructure on SiO2/Si substrate. Opt Express. 2014;22(13):15969.

    Article  Google Scholar 

  11. Tongay S, Zhou J, Ataca C, Lo K, Matthews TS, Li JB, Grossman JC, Wu JQ. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012;12(11):5576.

    Article  Google Scholar 

  12. Ni ZJ, Wang YY, Yu T, Shen ZX. Raman spectroscopy and imaging of graphene. Nano Res. 2008;1(4):273.

    Article  Google Scholar 

  13. Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK, Ferrari AC. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97(18):187401.

    Article  Google Scholar 

  14. Koh YK, Bae M-H, Cahill DG, Pop E. Reliably counting atomic planes of few-layer graphene (n > 4). ACS Nano. 2011;5(1):269.

    Article  Google Scholar 

  15. Wang XF, Zhao M, Nolte DD. Optical contrast and clarity of graphene on an arbitrary substrate. Appl Phys Lett. 2009;95(8):81102.

    Article  Google Scholar 

  16. Li H, Lu G, Yin ZY, He QY, Li H, Zhang Q, Zhang H. Optical identification of single- and few-layer MoS2 sheets. Small. 2012;8(5):682.

    Article  Google Scholar 

  17. Li H, Wu J, Huang X, Lu G, Yang J, Lu X, Xiong QH, Zhang H. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano. 2013;7(11):10344.

    Article  Google Scholar 

  18. Blake P, Hill EW, Castro NAH, Novoselov KS, Jiang D, Yang R, Booth TJ, Geim AK. Making graphene visible. Appl Phys Lett. 2007;91(6):63124.

    Article  Google Scholar 

  19. Shaw JC, Zhou HL, Chen Y, Weiss NO, Liu Y, Huang Y, Duan XF. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014;7(4):511.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Research Funds of Renmin University of China (Nos. 13XNLF02 and 14XNLQ07) and the National Natural Science Foundation of China (Nos. 11304381, 11004245, 11174366 and 51202200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YP., Zhou, HJ., Zhao, GH. et al. Rapidly counting atomic planes of ultra-thin MoSe2 nanosheets (1 ≤ n ≤ 4) on SiO2/Si substrate. Rare Met. 35, 632–636 (2016). https://doi.org/10.1007/s12598-016-0776-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0776-6

Keywords

Navigation