Skip to main content
Log in

Nucleation mechanisms of dynamic recrystallization for G3 alloy during hot compression

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Dynamic recrystallization (DRX) mechanisms of a nickel-based corrosion-resistant alloy, G3, were investigated by hot compression tests with temperatures from 1050 to 1200 °C and strain rates from 0.1 to 5.0 s−1. Deformation microstructure was observed at the strain from 0.05 to 0.75 by electron backscatter diffraction (EBSD) and transmission electron microscope (TEM). Work hardening rate curves were calculated to analyze the effect of deformation parameters on the nucleation process. Results indicate that strain-induced grain boundary migration is the principal mechanism of DRX. Large annealing twins promote nucleation by accumulating dislocations and fragmenting into cell blocks. Continuous dynamic recrystallization is also detected to be an effective supplement mechanism, especially at low temperature and high strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luo KJ, Zhang MC, Wang BS, Dong JX. Research on hot deformation behavior of Hastelloy G-3 alloy. Rare Met Mater Eng. 2011;40(4):605.

    Google Scholar 

  2. McQueen HJ, Ryan ND. Constitutive analysis in hot working. Mater Sci Eng A. 2002;322(1):43.

    Article  Google Scholar 

  3. Sakai T. Dynamic recrystallization microstructures under hot working conditions. J Mater Process Technol. 1995;53(95):349.

    Article  Google Scholar 

  4. Wang L, Liu F, Cheng JJ, Zuo Q, Chen CF. Hot deformation characteristics and processing map analysis for nickel-base corrosion resistant alloy. J Alloys Compd. 2015;623:69.

    Article  Google Scholar 

  5. Weaver DS, Semiatin SL. Recrystallization and grain-growth behavior of a nickel-base superalloy during multi-hit deformation. Scr Mater. 2007;57:1044.

    Article  Google Scholar 

  6. Wang J, Dong JX, Zhang MC, Xie XS. Hot working characteristics of nickel-base superalloy 740H during compression. Mater Sci Eng A. 2013;566(2):61.

    Article  Google Scholar 

  7. Jafari M, Najafizadeh A. Correlation between Zener–Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel. Mater Sci Eng A. 2009;501(1):16.

    Article  Google Scholar 

  8. Li FL, Fu R, Feng D, Tian ZL. Hot workability characteristics of Rene88DT superalloy with directionally solidified microstructure. Rare Met. 2015;34(1):51.

    Article  Google Scholar 

  9. Wang Y, Shao WZ, Zhen L, Yang L, Zhang XM. Flow behavior and microstructures of superalloy 718 during high temperature deformation. Mater Sci Eng A. 2008;497(1):479.

    Article  Google Scholar 

  10. Beladi H, Cizek P, Hodgson PD. On the characteristics of substructure development through dynamic recrystallization. Acta Mater. 2010;58(9):3531.

    Article  Google Scholar 

  11. Miura H, Sakai T, Hamaji H, Jonas JJ. Preferential nucleation of dynamic recrystallization at triple junctions. Scr Mater. 2004;50(1):65.

    Article  Google Scholar 

  12. Brunger E, Wang X, Gottstein G. Nucleation mechanism of dynamic recrystallization in austenitic steel alloy 800H. Scr Mater. 1998;38:1843.

    Article  Google Scholar 

  13. Wang X, Brunger E, Gottstein G. The role of twinning during dynamic recrystallization in alloy 800H. Scr Mater. 2002;46(12):875.

    Article  Google Scholar 

  14. Mahajan S, Pande CS, Imam MA, Rath BB. Formation of annealing twins in f.c.c crystals. Acta Mater. 1997;45(6):2633.

    Article  Google Scholar 

  15. Remy L. The interaction between slip and twinning systems and the influnce of twinning on the mechanical behavior of fcc metals and alloys. Metall Trans A. 1981;12A(3):387.

    Article  Google Scholar 

  16. Beladi H, Cizek P, Hodgson PD. Dynamic recrystallization of austenite in Ni-30 pct Fe model alloy: microstructure and texture evolution. Metall Mater Trans A. 2009;40A(5):1175.

    Article  Google Scholar 

  17. Jonas JJ, Quelennec X, Jinag L, Martin E. The avrami kinetics of dynamic recrystallization. Acta Mater. 2009;57(9):2748.

    Article  Google Scholar 

  18. Poliak EI, Jonas JJ. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater. 1996;44(1):127.

    Article  Google Scholar 

  19. Zahiri SH, Davies CJ, Hodgson PD. A mechanical approach to quantify dynamic recrystallization in polycrystalline metals. Scri Mater. 2005;52(4):299.

    Article  Google Scholar 

  20. Jiang H, Dong JX, Zhang MC, Zheng L, Yao ZH. Hot deformation characteristics of alloy 617B nickel-based superalloy: a study using processing map. J Alloys Compd. 2015;647:338.

    Article  Google Scholar 

  21. Yang L, Dong JX, Zhang MC. Deformation behavior and dynamic recrystallization model for 690 alloy at elevated temperature. Rare Met Mater Eng. 2012;41(4):727.

    Google Scholar 

  22. Medina SF, Hernandez CA. General expression of the Zener–Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels. Acta Mater. 1996;44(1):137.

    Article  Google Scholar 

  23. Badiola DJ, Mendia AI, Gutierrez I. Study by EBSD of the development of the substructure in a hot deformed 304 stainless steel. Mater Sci Eng A. 2005;394(1–2):445.

    Article  Google Scholar 

  24. Medina SF, Hernandez CA. Modelling of the dynamic recrystallization of austenite in low alloy and micro-alloyed steels. Acta Mater. 1996;44(1):165.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51301085) and the Doctoral Scientific Research Foundation of Nanjing Institute of Technology (No. YKJ201305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Dong, JX. & Zhang, MC. Nucleation mechanisms of dynamic recrystallization for G3 alloy during hot compression. Rare Met. 35, 543–550 (2016). https://doi.org/10.1007/s12598-016-0718-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0718-3

Keywords

Navigation