Skip to main content
Log in

Structure, morphology and electrical resistance of WxN thin film synthesized by HFCVD method with various N2 contents

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Tungsten nitride (WxN) thin films with good crystalline structure, high quality and relatively low resistivity were deposited by hot filament chemical vapor deposition (HFCVD) technique at different mixtures of N2 and Ar gases. Experimental data demonstrate that different N2 contents in gas mixture strongly affect microstructure, phase formation, texture morphology and resistivity of the WxN films. According to X-ray diffraction (XRD) patterns, the growth of tungsten nitride films promotes δ-WN phase for lower N2 contents in gas mixture. At higher N2 contents, a phase transition is observed in the tungsten nitride films. Both hexagonal δ-WN and cubic β-W2N phases coexist, and WN phase approximately disappears with N2 contents in the gas mixture increasing. Scanning electron microscope (SEM) images for deposited films at lower N2 contents in gas mixture indicate a definite dense columnar nanostructure. The electrical resistivity results exhibit a significant drop for the WxN thin films with N2 contents in the mixed gas increasing. The changes in N2 content in gas mixture are found to be responsible for variation in the film resistivity values. Thus, the deposited tungsten nitride thin film at higher N2 contents in gas mixture has noncolumnar microstructure and lower resistivity, which may be used as a superior diffusion barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Constable CP, Yarwood J, Munz WD. Raman microscopic studies of PVD hard coatings. Surf Coat Technol. 1999;116–119(2–3):155.

    Google Scholar 

  2. Becker SJ, Suh S, Wang Sh, Gordon RG. Highly conformal thin films of tungsten nitride prepared by atomic layer deposition from a novel precursor. Chem Mater. 2003;15(15):2969.

    CAS  Google Scholar 

  3. Marco JF, Gancedo JR, Auger MA, Sanchez O, Albella JM. Chemical stability of TiN, TiAlN and AlN layers in aggressive SO2 environments. Surf Interface Anal. 2005;37(12):1082.

    CAS  Google Scholar 

  4. Glaser A, Surnev S, Netzer FP, Fateh N, Fontalvo GA, Mitterer C. Oxidation of vanadium nitride and titanium nitride coatings. Surf Sci. 2007;601(4):1153.

    CAS  Google Scholar 

  5. Huang CF, Tsui BY, Lu CH. Thermal stability and electrical characteristics of tungsten nitride gates in metal–oxide–semiconductor devices. Jpn J Appl Phys. 2008;47(2):872.

    CAS  Google Scholar 

  6. Chakrapani V, Thangala J, Sunkara MK. WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production. Hydrog Energy. 2009;34(22):9050.

    CAS  Google Scholar 

  7. Wang Z, Liu Z, Yang Z, Shingubara S. Characterization of sputtered tungsten nitride film and its application to Cu electroless plating. Microelectron Eng. 2008;85:395.

    CAS  Google Scholar 

  8. Lee CW, Kim YT. High temperature thermal stability of plasma-deposited tungsten nitride Schottky contacts to GaAs. Solid State Electron. 1995;38(3):679.

    CAS  Google Scholar 

  9. Lee CW, Kim YT, Min SK. Characteristics of plasma enhanced chemical vapor deposited tungsten nitride thin films. Appl Phys Lett. 1993;62(25):3312.

    CAS  Google Scholar 

  10. Shen YG, Mai YW, McBride WE, Zhang QC, McKenzie DR. Characteristics in sputtered tungsten nitride films. Thin Solid Films. 2000;37(1–2):257.

    Google Scholar 

  11. Moriwaki M, Yamada T, Harada Y, Fujii S, Fujii S, Yamanaka M, Shibata J, Mori Y. Improved metal gate process by simultaneous gate-oxide nitridation during W/WNx gate formation. Jpn J Appl Phys. 2000;39(4):2177.

    Google Scholar 

  12. Ko A, Han SB, Lee YW, Park KW. Template-free synthesis and characterization of mesoporous tungsten nitride nanoplates. Phys Chem Chem Phys. 2011;13(28):12705.

    CAS  Google Scholar 

  13. Levy F, Hones P, Schmid PE, Sanjines R, Diserns M, Wiemer C. Electronic states and mechanical properties in transition metal nitrides. Surf Coat Technol. 1999;120:284.

    Google Scholar 

  14. Chang KM, Yeh TH, Deng IC, Shih CW. Amorphous like chemical vapor deposited tungsten diffusion barrier for copper metallization and effects of nitrogen addition. J Appl Phys. 1997;82(3):1469.

    CAS  Google Scholar 

  15. Stach S, Garczyk Ż, Ţălu Ş, Solaymani S, Ghaderi A, Moradian R, Nezafat NB, Elahi SM, Gholamali H. Stereometric parameters of the Cu/Fe NPs thin films. J Phys Chem C. 2015;119(31):17887.

    CAS  Google Scholar 

  16. Ţălu Ş, Bramowicz M, Kulesza S, Shafiekhani A, Ghaderi A, Mashayekhi F, Solaymani S. Microstructure and tribological properties of FeNPs@a-C: H films by micromorphology analysis and fractal geometry. Ind Eng Chem Res. 2015;54(33):8212.

    Google Scholar 

  17. Chang KM, Yeh TH, Deng IC. Nitridation of fine grain chemical vapor deposited tungsten film as diffusion barrier for aluminum metallization. Appl Phys. 1997;81(8):3670.

    CAS  Google Scholar 

  18. Eizenberg M, Meyer F, Benhocine A, Bouchier D. Reactive-ion-beam-sputtered WNx films on silicon: growth mode and electrical properties. J Appl Phys. 1994;75(8):3900.

    Google Scholar 

  19. Yamamoto T, Kawate M, Hasegawa H, Suzuki T. Effects of nitrogen concentration on microstructures of WNx films synthesized by cathodic arc method. Surf Coat Technol. 2005;193(1–3):372.

    Google Scholar 

  20. Etaii GR, Hossinnejad MT, Ghoranneviss M, Habibi M, Shirazi M. Deposition of tungsten nitride on stainless steel substrates using plasma focus device. Nucl Instrum Methods Phys Res B. 2011;269(10):1058.

    Google Scholar 

  21. Bystrova S, Aarnink AAI, Holleman J, Wolters R. Atomic layer deposition of W1.5N barrier films for Cu metallization. J Electrochem Soc. 2005;152(7):522.

    Google Scholar 

  22. Lu JP, Hsu Y, Luttmer JD, Magel L, Tsai HL. A new process for depositing tungsten nitride thin films. J Electrochem Soc. 1998;145(2):21.

    Google Scholar 

  23. Tsai MH, Chiu HT, Chuang SH. Metal organic chemical vapor deposition of tungsten nitride for advanced metallization. Appl Phys Lett. 1996;68(10):1412.

    CAS  Google Scholar 

  24. Feugeas JN, Llonch EC, de Gonzalez CO, Galambos G. Nitrogen implantation of AISI 304 stainless steel with a coaxial plasma gun. J Appl Phys. 1988;64(5):2648.

    CAS  Google Scholar 

  25. Meunier C, Monteil C, Savall C, Palmino F, Weber J, Berjoan R, Durand J. RBS-ERDA, XPS and XRD characterizations of PECVD tungsten nitride films. Appl Surf Sci. 1998;125(3–4):313.

    CAS  Google Scholar 

  26. Shen YG, Mai YW. Structural studies of amorphous and crystallized tungsten nitride thin films by EFED, XRD and TEM. Appl Surf Sci. 2000;167(1–2):59.

    CAS  Google Scholar 

  27. Nakajima T, Watanabe K, Watanabe N. Preparation of tungsten nitride film by CVD method using WF6. J Electrochem Soc. 1987;134(12):3175.

    CAS  Google Scholar 

  28. Klaus JW, Ferro SJ, George SM. Atomic layer deposition of tungsten nitride films using sequential surface reactions. J Electrochem Soc. 2000;147(3):1175.

    CAS  Google Scholar 

  29. Uekubo M, Oku T, Nii K, Murakami M, Takahiro K, Yamaguchi S, Nakano T, Ohta T. WNx diffusion barriers between Si and Cu. Thin Solid Films. 1996;286(1–2):170.

    Google Scholar 

  30. Holloway K, Fryer PM, Cabral C, Harper JME, Bailey PJ, Kelleher KH. Tantalum as a diffusion barrier between copper and silicon: failure mechanism and effect of nitrogen additions. J Appl Phys. 1992;71(11):5433.

    CAS  Google Scholar 

  31. Wang MT, Lin YC, Chen MC. Barrier properties of very thin Ta and TaN layers against copper diffusion. J Electrochem Soc. 1998;17(1–3):2538.

    Google Scholar 

  32. Ajmera HM, Anderson T, Koller J, McElwee-White L, Norton DP. Deposition of WNxCy thin films for diffusion barrier application using the dimethylhydrazido (2−) tungsten complex (CH3CN)Cl4W(NNMe2). Thin Solid Films. 2009;517(21):6038.

    Google Scholar 

  33. Sadanand VD, Dupuiet JL, Gulari E. Filament-activated chemical vapour deposition of nitride thin films. Adv Mater Opt Electron. 1996;6(3):135.

    Google Scholar 

  34. Soto G, Cruz W, Castillón F, Díaz JA, Machorro R, Farías MH. Tungsten nitride films grown via pulsed laser deposition studied in situ by electron spectroscopies. Appl Surf Sci. 2003;214(1–4):58.

    CAS  Google Scholar 

  35. Vu QT, Pokela P, Garden CL, Kolawa E, Raud S, Nicolet MA. Thermal oxidation of reactively sputtered amorphous W(80)N(20) films. J Appl Phys. 1990;68(12):6420.

    CAS  Google Scholar 

  36. Jiang PC, Yen CK, Chen JS. Influence of thickness on the material characteristics of reactively sputtered W2N layer and electrical properties of W/W2N/SiO2/Si capacitors. J Alloy Compd. 2008;463(1–2):522.

    CAS  Google Scholar 

  37. Tang W, Xu KW, Wang P, Li X. Surface roughness and resistivity of Au film on Si-(111) substrate. Microelectron Eng. 2003;66(1–4):445.

    CAS  Google Scholar 

  38. Dirks AG, Wolters RAM, De Veirman AEM. Columnar microstructures in magnetron-sputtered refractory metal thin films of tungsten, molybdenum and W-Ti-(N). Thin Solid Films. 1992;208(2):181.

    CAS  Google Scholar 

  39. Jiang PC, Lai YS, Chen JS. Dependence of crystal structure and work function of WNx films on the nitrogen content. Appl Phys Lett. 2006;89(12):122107.

  40. Ou KL, Wu WF, Chou CP, Chiou SY, Wu CC. Improved TaN barrier layer against Cu diffusion by formation of an amorphous layer using plasma treatment. J Vac Sci Technol B. 2002;20(5):2154.

    CAS  Google Scholar 

  41. Sun YM, Engbrecht ER, Bolom T, Cilino C, Sim JH, White JM, Ekerdt JG, Pfeifer K. Ultrathin tungsten nitride film growth on dielectric surface. Thin Solid Films. 2004;458(1–2):251.

    CAS  Google Scholar 

  42. Yamamoto T, Kawate M, Hasegawa H, Suzuki T. Effects of nitrogen concentration on microstructures of WNx films synthesized by cathodic arc method. Surf Coat Technol. 2005;93(1–3):372.

    Google Scholar 

  43. Boukhris L, Poitevin JM. Electrical resistivity, structure and composition of dc sputtered WNx films. Thin Solid Films. 1997;310(1–2):222.

    Google Scholar 

  44. Kim SD. Microstructural properties of plasma-enhanced chemical vapor deposited WNx films using WF6–H2–N2 precursor system. Curr Appl Phys. 2007;7(4):426.

    Google Scholar 

  45. Schlemminger W, Stark D. The influence of deposition temperature on the electrical resistance of thin Cu films. Surf Sci. 1987;189:1103.

    Google Scholar 

  46. Sadashivaiah PJ, Sankarappa T, Sujatha T, Santoshkumar M, Rawat R, Sarvanan P, Bhatnagar AK. Structural, magnetic and electrical properties of Fe/Cu/Fe films. Vacuum. 2010;85(3):466.

    CAS  Google Scholar 

  47. Chaverri D, Alejandro S, Castano V. Grain size and electrical resistivity measurements on aluminum polycrystalline thin films. Mater Lett. 1991;12(5):344.

    CAS  Google Scholar 

  48. Tseng WT, Wang YL, Niu J. Microstructure-related resistivity change after chemical–mechanical polish of Al and W thin films. Thin Solid Films. 2000;370(1–2):96.

    CAS  Google Scholar 

  49. Wen M, Meng QN, Yu WX, Zheng WT, Mao SX, Hua MJ. Growth, stress and hardness of reactively sputtered tungsten nitride thin films. Surf Coat Technol. 2010;205(7):1953.

    CAS  Google Scholar 

  50. Artamonov OM, Samarin SN, Williams JF. Electron screening and electron–electron scattering mechanisms. J Electron Spectrosc Relat Phenom. 2013;191:79.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Ghoranneviss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgary, S., Hantehzadeh, M.R., Ghoranneviss, M. et al. Structure, morphology and electrical resistance of WxN thin film synthesized by HFCVD method with various N2 contents. Rare Met. 39, 1440–1448 (2020). https://doi.org/10.1007/s12598-016-0696-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0696-5

Keywords

Navigation