Skip to main content
Log in

Effect of Nitrogen Flow Rate During Annealing on Structural and Electro-optical Properties of ITO Thin Films Deposited by Ultrasonic Spray Pyrolysis

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, we first fabricated ITO thin film samples on glass substrates at 300 °C temperature by ultrasonic spray pyrolysis technique. Then three different groups of samples were prepared under three different medium conditions. Some of these samples were annealed at 475 °C in an atmospheric medium and the other two group of samples were annealed at the same temperature, but in different media in which flowing N2 with 150 and 250 L/h. Structural, morphological, electric and electronic, and optical properties of these samples were determined by X-ray diffraction, scanning electron microscope, atomic force microscope, ultraviolet–visible spectrometer, and cryostat measurements. These measurements showed that increasing nitrogen (N2) flow rate in annealing improved the structural properties of the films by almost doubling crystallinity, but bandgap energy of the samples decreased. It was seen that with this increasing the N2 flow rate slightly reduced the transmittance of the films. In addition, Hall measurements have shown that the resistivity of the films decreased from \(1.65\times {10}^{-2}\) to \(1.19\times {10}^{-2}\) Ω cm by introducing the N2 gas. It has also been shown that annealing under N2 gas flow is a method that can be used efficiently to reduce the Oxygen (O2) ratio in the ITO thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Exarhos, G.J.; Zhou, X.D.: Discovery-based design of transparent conducting oxide films. Thin Solid Films 515, 7025–7052 (2007). https://doi.org/10.1016/j.tsf.2007.03.014

    Article  Google Scholar 

  2. Fauzia, V.; Yusnidar, M.N.; Lalasari, L.H.; Subhan, A.; Umar, A.A.: High figure of merit transparent conducting Sb-doped SnO2thin films prepared via ultrasonic spray pyrolysis. J. Alloy Compd. 720, 79–85 (2017). https://doi.org/10.1016/j.jallcom.2017.05.243

    Article  Google Scholar 

  3. Ginley, D.S.; Bright, C.; Edi, G.: Transparent. MRS Bull. (2000). https://doi.org/10.1557/mrs2000.256

    Article  Google Scholar 

  4. Fortunato, E.; Ginley, D.; Hosono, H.; Paine, D.C.: Transparent conducting oxides for photovoltaics. MRS Bull. 32, 242–247 (2007). https://doi.org/10.1557/mrs2007.29

    Article  Google Scholar 

  5. Livage, J.; Ganguli, D.: Sol–gel electrochromic coatings and devices: a review. Sol. Energy Mater. Sol. Cells 68, 365–381 (2001). https://doi.org/10.1016/S0927-0248(00)00369-X

    Article  Google Scholar 

  6. Granqvist, C.G.; Hultåker, A.: Transparent and conducting ITO films: new developments and applications. Thin Solid Films 411, 1–5 (2002). https://doi.org/10.1016/S0040-6090(02)00163-3

    Article  Google Scholar 

  7. Aegerter, M.A.; Al-Dahoudi, N.: Wet-chemical processing of transparent and antiglare conducting ITO coating on plastic substrates. J. Sol–Gel Sci. Technol. 27, 81–89 (2003). https://doi.org/10.1023/A:1022636112130

    Article  Google Scholar 

  8. Minami, T.: Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. (2005). https://doi.org/10.1088/0268-1242/20/4/004

    Article  Google Scholar 

  9. Granqvist, C.G.: Transparent conductors as solar energy materials: a panoramic review. Sol. Energy Mater. Sol. Cells 91, 1529–1598 (2007). https://doi.org/10.1016/j.solmat.2007.04.031

    Article  Google Scholar 

  10. Parola, S.; Verdenelli, M.; Sigala, C.; Scharff, J.P.; Velez, K.; Veytızou, C.; Quinson, J.F.: Sol–gel coatings on non-oxide planar substrates and fibers: a protection barrier against oxidation and corrosion. J. Sol–Gel Sci. Technol. 26, 803–806 (2003). https://doi.org/10.1023/A:1020739330499

    Article  Google Scholar 

  11. Moholkar, A.V.; Pawar, S.M.; Rajpure, K.Y.; Patil, P.S.; Bhosale, C.H.; Kim, J.H.: Temperature-dependent properties of spray-deposited ITO thin films. J. Therm. Spray Technol. 19, 531–540 (2010). https://doi.org/10.1007/s11666-009-9412-4

    Article  Google Scholar 

  12. Godt, J.J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; David, A.; Groneberg, D.A.: The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. (2006). https://doi.org/10.1186/1745-6673-1-22

    Article  Google Scholar 

  13. Gupta, S.; Yadav, B.C.; Dwivedi, P.K.; Das, B.: Microstructural, optical and electrical investigations of Sb-SnO2thin films deposited by spray pyrolysis. Mater. Res. Bull. 48(9), 3315–3322 (2013). https://doi.org/10.1016/j.materresbull.2013.05.001

    Article  Google Scholar 

  14. Fauzia, V.; Yusnidar, M.N.; Lalasari, L.H.; Subhan, A.; Umar, A.A.: High figure of merit transparent conducting Sb-doped SnO2 thin films prepared via ultrasonic spray pyrolysis. J. Alloy Compd. 720, 79–85 (2017). https://doi.org/10.1016/j.jallcom.2017.05.243

    Article  Google Scholar 

  15. Kim, S.S.; Choi, S.Y.; Park, C.G.; Jin, H.W.: Transparent conductive ITO thin films through the sol–gel process using metal salts. Thin Solid Films Thin Solid Films 347, 155–160 (1999). https://doi.org/10.1016/S0040-6090(98)01748-9

    Article  Google Scholar 

  16. Löffler, J.: Transparent conductive oxides for thin-film silicon solar cells. Utrecht University Repository, PhD thesis, Netherlands, p. 147 (2005)

  17. Sarma, B.K.; Pradhyut, R.P.: Al-doped ZnO transparent conducting oxide with appealing electro-optical properties–Realization of indium free transparent conductors from sputtering targets with varying dopant concentrations. Mater. Today Commun. 23, 100870 (2020). https://doi.org/10.1016/j.mtcomm.2019.100870

    Article  Google Scholar 

  18. Szkutnik, P.D.; Roussel, H.; Lahootun, V.; Mescot, X.; Weiss, F.; Jiménez, C.: Study of the functional properties of ITO grown by metalorganic chemical vapor deposition from different indium and tin precursors. J. Alloy Compd. 603, 268–273 (2014). https://doi.org/10.1016/j.jallcom.2014.03.088

    Article  Google Scholar 

  19. Aouaj, M.A.; Diaz, R.; Belayachi, A.; Rueda, F.; Abd-Lefdil, M.: Comparative study of ITO and FTO thin films grown by spray pyrolysis. Mater. Res. Bull. 44, 1458–1461 (2009). https://doi.org/10.1016/j.materresbull.2009.02.019

    Article  Google Scholar 

  20. Untila, G.G.; Kost, T.N.; Chebotareva, A.B.; Timofeyev, M.A.: Effect of the tin content on the composition and optical and electrical properties of ITO films deposited onto silicon and glass by ultrasonic spray pyrolysis. Semiconductors 46(7), 962–968 (2012). https://doi.org/10.1134/S1063782612070202

    Article  Google Scholar 

  21. Jadsadapattarakul, D.; Euvananont, C.; Thanachayanont, C.; Nukeaw, J.; Sooknoi, T.: Tin oxide thin films deposited by ultrasonic spray pyrolysis. Ceram. Int. 34, 1051–1054 (2008). https://doi.org/10.1016/j.ceramint.2007.09.096

    Article  Google Scholar 

  22. Thirumoorthi, M.; Thomas Joseph Prakash, J.: Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis. J. Asian Ceram. Soc. 4, 124–132 (2016). https://doi.org/10.1016/j.jascer.2016.01.001

    Article  Google Scholar 

  23. Guillén, G.; Herrero, J.: Influence of Oxygen in the deposition and annealing atmosphere on the characteristics of ITO thin films prepared by sputtering at room temperature. Vacuum 80(6), 615–620 (2006). https://doi.org/10.1016/j.vacuum.2005.10.006

    Article  Google Scholar 

  24. Lee, J.; Lim, D.G.; Song, W.; Yi, J.: Influence of annealing temperature and atmosphere on the properties of ITO films deposited using a powdery target. J. Korean Phys. Soc. 51(3), 1143–1146 (2007)

    Article  Google Scholar 

  25. Steckl, A.J.; Mohammed, G.: The effect of ambient atmosphere in the annealing of indium tin oxide films. J. Appl. Phys. 51(7), 3890–3895 (1980). https://doi.org/10.1063/1.328135

    Article  Google Scholar 

  26. Guillén, C.; Herrero, J.: Structure, optical, and electrical properties of indium tin oxide thin films prepared by sputtering at room temperature and annealed in air or nitrogen. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2715539

    Article  Google Scholar 

  27. Mikrajuddin, A.; Khairurrijal, K.: Derivation of scherrer relation using an approach in basic physics course. J. Nanosains Nanotenol. 1(1), 28–32 (2008)

    Google Scholar 

  28. Untila, G.G.; Kost, T.N.; Chebotareva, A.B.: Fluorine and tin-doped indium oxide films grown by ultrasonic spray pyrolysis: characterization and application in bifacial silicon concentrator solar cells. Sol. Energy 159, 173–185 (2018). https://doi.org/10.1016/j.solener.2017.10.068

    Article  Google Scholar 

  29. Park, J.O.; Lee, J.H.; Kim, J.J.; Cho, S.H.; Cho, Y.K.: crystallization of indium tin oxide thin films prepared by RF-magnetron sputtering without external heating. Thin Solid Films 474, 127–132 (2005). https://doi.org/10.1016/j.tsf.2004.08.172

    Article  Google Scholar 

  30. Rozati, S.M.; Ganj, T.: Transparent conductive Sn-doped indium oxide thin films deposited by spray pyrolysis technique. Renew. Energy 29(10), 1671–1676 (2004). https://doi.org/10.1016/j.renene.2004.01.008

    Article  Google Scholar 

  31. Lee, J.H.; Kim, Y.H.; Ahn, S.J.; Ha, T.H.; Kim, H.S.: Grain-size effect on the electrical properties of nanocrystalline indium tin oxide thin films. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 199, 37–41 (2015). https://doi.org/10.1016/j.mseb.2015.04.011

    Article  Google Scholar 

  32. Tauc, J.; Menth, A.: States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972)

    Article  Google Scholar 

  33. Jongthammanurak, S.; Witana, M.; Cheawkul, T.; Thanachayanont, C.: The effects of carrier gas and substrate temperature on ZnO films prepared by ultrasonic spray pyrolysis. Mater. Sci. Semicond. Process. 16(3), 625–632 (2013). https://doi.org/10.1016/j.mssp.2012.11.009

    Article  Google Scholar 

  34. Adedokun, O.: Review on transparent conductive oxides thin films deposited by sol–gel spin coating technique. Int. J. Eng. Sci. Appl. 2(3), 88–97 (2018)

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Refik KAYALI for his help in the reduction and his contribution to improving our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Kaleli.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koç, M., Kaleli, M. & Öztürk, M. Effect of Nitrogen Flow Rate During Annealing on Structural and Electro-optical Properties of ITO Thin Films Deposited by Ultrasonic Spray Pyrolysis. Arab J Sci Eng 47, 7707–7716 (2022). https://doi.org/10.1007/s13369-021-06553-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06553-z

Keywords

Navigation