Skip to main content
Log in

Progress in application and preparation of silver nanowires

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Silver nanowires have attracted wide research attention for their excellent optical, electrical and chemical properties. Many researches were performed toward synthesizing and application of silver nanowires. The application of silver nanowires such as transparent conductive film electrode, conductive silver adhesive and nanowelding technology was introduced herein. Principles and characteristics of different synthesizing methods of silver nanowires were reviewed in this paper, including template method, liquid polyol method, self-assembly method, ultrasonic reduction method and wet chemical method. The liquid polyol method was the most available one to achieve efficient large-scale production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang Z, Li J. Synthesis and characterization of silver nanoparticles by a sonochemical method. Rare Met Mater Eng. 2012;41(10):1700.

    Article  Google Scholar 

  2. Guan M, Shang T, He X, Sun J, Zhou Q, Gu P. Synthesis of silver nanoplates without agitation and surfactant. Rare Met Mater Eng. 2011;40(12):2069.

    Article  Google Scholar 

  3. Jiang X, Yu A. Low dimensional silver nanostructures: synthesis, growth mechanism, properties and applications. J Nanosci Nanotechnol. 2010;10(12):7829.

    Article  Google Scholar 

  4. Hu MJ, Gao JF, Dong YC, Yang SL, Li RKY. Rapid controllable high-concentration synthesis and mutual attachment of silver nanowires. RSC Adv. 2012;2(5):2055.

    Article  Google Scholar 

  5. Shobin LR, Manivannan S. One pot rapid synthesis of silver nanowires using NaCl assisted glycerol mediated polyol process. Electron Mater Lett. 2014;10(6):1027.

    Article  Google Scholar 

  6. Cheng D, Kim WY, Min SK, Nautiyal T, Kim KS. Magic structures and quantum conductance of 110 silver nanowires. Phys Rev Lett. 2006;96(9):096104.

    Article  Google Scholar 

  7. Li Z, Hao F, Huang Y, Fang Y, Nordlander P, Xu H. Directional light emission from propagating surface plasmons of silver nanowires. Nano Lett. 2009;9(12):4383.

    Article  Google Scholar 

  8. Madaria AR, Kumar A, Zhou CW. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology. 2011;22(24):7.

    Article  Google Scholar 

  9. Li Y, Cui P, Wang L, Lee H, Lee K, Lee H. Highly bendable, conductive, and transparent film by an enhanced adhesion of silver nanowires. ACS Appl Mater Interfaces. 2013;5(18):9155.

    Article  Google Scholar 

  10. Jose Andres L, Fe Menendez M, Gomez D, Luisa Martinez A, Bristow N, Paul Kettle J, Menendez A, Ruiz B. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells. Nanotechnology. 2015;26(26):265201.

    Article  Google Scholar 

  11. Oh MK, Shin YS, Lee CL, De R, Kang H, Yu NE, Kim BH, Kim JH. Morphological and SERS properties of silver nanorod array films fabricated by oblique thermal evaporation at various substrate temperatures. Nanoscale Res Lett. 2015;10(1):962.

    Article  Google Scholar 

  12. Khlebtsov BN, Khanadeev VA, Maksimova IL, Terentyk GS, Khlebtsov NG. Silver nanocubes and gold nanocages: fabrication, optical and photothermal properties. Russ Nanotechnol. 2010;5(7–8):54.

    Google Scholar 

  13. Xu G, Qiao X, Qiu X, Chen J. Progress in preparation of nano-silver. Materials Rev. 2010;24(11):139.

    Google Scholar 

  14. Zhang Y, Wang J, Yang P. Convenient synthesis of Ag nanowires with tunable length and morphology. Mater Res Bull. 2013;48(2):461.

    Article  Google Scholar 

  15. Zhu G, Chen DP. Solvothermal fabrication of uniform silver nanowires. J Mater Sci Mater Electron. 2012;23(11):2035.

    Article  Google Scholar 

  16. Qu F, Zhang T, Gu HW, Qiu QQ, Ding FZ, Peng XY, Wang HY. Electrical and optical properties of ZnO: Al films with different hydrogen contents in sputtering gas. Rare Met. 2015;34(3):173.

    Article  Google Scholar 

  17. Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR. Transparent, conductive carbon nanotube films. Science. 2004;305(5688):1273.

    Article  Google Scholar 

  18. Watcharotone S, Dikin DA, Stankovich S, Piner R, Jung I, Dommett GHB, Evmenenko G, Wu SE. Graphene-silica composite thin films as transparent conductors. Nano Lett. 2007;7(7):1888.

    Article  Google Scholar 

  19. Hecht DS, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater. 2011;23(13):1482.

    Article  Google Scholar 

  20. Granqvist CG, Hultaker A. Transparent and conducting ITO films: new developments and applications. Thin Solid Films. 2002;411(1):1.

    Article  Google Scholar 

  21. Harvey SP, Mason TO, Gassenbauer Y, Schafranek R, Klein A. Surface versus bulk electronic/defect structures of transparent conducting oxides: I. Indium oxide and ITO. J Phys D Appl Phys. 2006;39(18):3959.

    Article  Google Scholar 

  22. Ren B, Liu X, Wang M, Xu Y. Preparation and characteristics of indium tin oxide (ITO) thin films at low temperature by r.f. magnetron sputtering. Rare Met. 2006;25(S):137.

    Article  Google Scholar 

  23. Tenent RC, Barnes TM, Bergeson JD, Ferguson AJ, To B, Gedvilas LM, Heben MJ, Blackburn JL. Ultrasmooth, Large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv Mater. 2009;21(31):3210.

    Article  Google Scholar 

  24. Liu Y, Zhang J, Yan J, Du J, Gan G, Yi J. Direct electrodeposition of Fe–Ni alloy films on silicon substrate. Rare Met Mater Eng. 2014;43(12):2966.

    Article  Google Scholar 

  25. He WW, Ye CH. Flexible transparent conductive films on the basis of Ag nanowires: design and applications: a review. J Mater Sci Technol. 2015;31(6):581.

    Article  Google Scholar 

  26. Han T-H, Lee Y, Choi M-R, Woo S-H, Bae S-H, Hong BH, Ahn JH, Lee TW. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics. 2012;6(2):105.

    Article  Google Scholar 

  27. Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano. 2010;4(1):43.

    Article  Google Scholar 

  28. Liu J, Wu G, Li S, Yu M, Yi J, Wu L. Comparative study on chemical stripping of titanium oxide films formed on titanium alloy. Rare Met Mater Eng. 2012;41(8):1331.

    Article  Google Scholar 

  29. Zeng XY, Zhang QK, Yu RM, Lu CZ. A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer. Adv Mater. 2010;22(40):4484.

    Article  Google Scholar 

  30. Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater. 2011;23(5):664.

    Article  Google Scholar 

  31. Li J, Liang J, Jian X, Hu W, Li J, Pei Q. A flexible and transparent thin film heater based on a silver nanowire/heat-resistant polymer composite. Macromol Mater Eng. 2014;299(11):1403.

    Article  Google Scholar 

  32. Choi HO, Kim DW, Kim SJ, Yang SB, Jung HT. Role of 1D metallic nanowires in polydomain graphene for highly transparent conducting films. Adv Mater. 2014;26(26):4575.

    Article  Google Scholar 

  33. Ye SR, Rathmell AR, Chen ZF, Stewart IE, Wiley BJ. Metal nanowire networks: the next generation of transparent conductors. Adv Mater. 2014;26(39):6670.

    Article  Google Scholar 

  34. Madaria AR, Kumar A, Ishikawa FN, Zhou CW. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010;3(8):564.

    Article  Google Scholar 

  35. Lee HS, Kim YW, Kim JE, Yoon SW, Kim TY, Noh JS, Suh KS. Synthesis of dimension-controlled silver nanowires for highly conductive and transparent nanowire films. Acta Mater. 2015;83:84.

    Article  Google Scholar 

  36. Langley DP, Giusti G, Lagrange M, Collins R, Jimenez C, Brechet Y, Bellet D. Silver nanowire networks: physical properties and potential integration in solar cells. Solar Energy Mater Solar Cells. 2014;125(S):318.

    Article  Google Scholar 

  37. Ajuria J, Ugarte I, Cambarau W, Etxebarria I, Tena-Zaera R, Pacios R. Insights on the working principles of flexible and efficient ITO-free organic solar cells based on solution processed Ag nanowire electrodes. Sol Energy Mater Sol Cells. 2012;102:148.

    Article  Google Scholar 

  38. Zhang Q, Vichchulada P, Lay MD. Length, bundle, and density gradients in spin cast single-walled carbon nanotube networks. J Phys Chem C. 2010;114(39):16292.

    Article  Google Scholar 

  39. Guo X, Guo CW, Wang C, Li C, Sun XM. AlGaInP LED with low-speed spin-coating silver nanowires as transparent conductive layer. Nanoscale Res Lett. 2014;9(1):2495.

    Google Scholar 

  40. Liu Y, Zhao X, Cai B, Pei T, Tong Y, Tang Q, Liu Y. Controllable fabrication of oriented micro/nanowire arrays of dibenzo-tetrathiafulvalene by a multiple drop-casting method. Nanoscale. 2014;6(3):1323.

    Article  Google Scholar 

  41. Hu L, Kim HS, Lee JY, Peumans P, Cui Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano. 2010;4(5):2955.

    Article  Google Scholar 

  42. Triambulo RE, Cheong H-G, Park J-W. All-solution-processed foldable transparent electrodes of Ag nanowire mesh and metal matrix films for flexible electronics. Org Electron. 2014;15(11):2685.

    Article  Google Scholar 

  43. Lu YC, Chou KS. Tailoring of silver wires and their performance as transparent conductive coatings. Nanotechnology. 2010;21(21):2157.

    Article  Google Scholar 

  44. Chen D, Qiao X, Qiu X, Tan F, Chen J, Jiang R. Effect of silver nanostructures on the resistivity of electrically conductive adhesives composed of silver flakes. J Mater Sci Mater Electron. 2010;21(5):486.

    Article  Google Scholar 

  45. Luo SY, Wang N, Xu WC, Lv Y. Preparation and rheological behavior of lead free silver conducting paste. Mater Chem Phys. 2008;111(1):20.

    Article  Google Scholar 

  46. Zhang X, Lei Y, Zhang Z, Qiu T. Preparation and conductivity of ultrafine silver conductive paste. Chin J Vac Sci Technol. 2014;34(11):1257.

    Google Scholar 

  47. Lu Y, Huang JY, Wang C, Sun S, Lou J. Cold welding of ultrathin gold nanowires. Nat Nanotechnol. 2010;5(3):218.

    Article  Google Scholar 

  48. Chen CX, Yan LJ, Kong ESW, Zhang YF. Ultrasonic nanowelding of carbon nanotubes to metal electrodes. Nanotechnology. 2006;17(9):2192.

    Article  Google Scholar 

  49. Zhao B, Chen C, Yadian B, Liu P, Lu Z, Xu D, Zhang Y. Effects of welding head on the carbon nanotube field emission in ultrasonic nanowelding. Thin Solid Films. 2009;517(6):2012.

    Article  Google Scholar 

  50. Garnett EC, Cai W, Cha JJ, Mahmood F, Connor ST, Christoforo MG, Cui Y, Mcgehee MD, Brongersma ML. Self-limited plasmonic welding of silver nanowire junctions. Nat Mater. 2012;11(3):241.

    Article  Google Scholar 

  51. Giusti G, Langley DP, Lagrange M, Collins R, Jimenez C, Brechet Y. Thermal annealing effects on silver nanowire networks. Int J Nanotechnol. 2014;11(9–11):785.

    Article  Google Scholar 

  52. Vafaei A, Hu A, Goldthorpe IA. Joining of individual silver nanowires via electrical current. Nano-Micro Lett. 2014;6(4):293–300.

    Article  Google Scholar 

  53. Ilie A, Crampin S, Karlsson L, Wilson M. Repair and stabilization in confined nanoscale systems-inorganic nanowires within single-walled carbon nanotubes. Nano Res. 2012;5(12):833.

    Article  Google Scholar 

  54. Ahn KW, Lim JY, Yang JH, Kim SG. In situ growth of silver nanoparticles in mesoporous silica by spray pyrolysis. J Nanopart Res. 2010;12(7):2457.

    Article  Google Scholar 

  55. Sun XY, Xu FQ, Li ZM, Zhang WH. Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template. Mater Chem Phys. 2005;90(1):69.

    Article  Google Scholar 

  56. Han YY, Cao L, Xu FQ, Qian K, Huang WX. Investigations on the thermal weight loss and the photoluminescence mechanism of AAO template. J Inorg Mater. 2012;27(3):305.

    Article  Google Scholar 

  57. Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev. 2011;111(6):3736.

    Article  Google Scholar 

  58. Kim TY, Kim WJ, Hong SH, Kim JE, Suh KS. Ionic-liquid-assisted formation of silver nanowires. Angew Chem Int Edit. 2009;48(21):3806.

    Article  Google Scholar 

  59. Sun YG, Mayers B, Herricks T, Xia YN. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett. 2003;3(7):955.

    Article  Google Scholar 

  60. Schuette WM, Buhro WE. Polyol synthesis of silver nanowires by heterogeneous nucleation; mechanistic aspects influencing nanowire diameter and length. Chem Mater. 2014;26(22):6410.

    Article  Google Scholar 

  61. Yan G, Peng J, Li S, Liu LF, Yan X, Zhou Z, Liu D, Wang J. Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidone-assisted polyol reduction. J Phys D (Appl Phys). 2005;38(7):1061.

    Article  Google Scholar 

  62. Sun YG, Yin YD, Mayers BT, Herricks T, Xia YN. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater. 2002;14(11):4736.

    Article  Google Scholar 

  63. Tsuji M, Nishizawa Y, Matsumoto K, Miyamae N, Tsuji T, Zhang X. Rapid synthesis of silver nanostructures by using microwave-polyol method with the assistance of Pt seeds and polyvinylpyrrolidone. Colloids Surf A Physicochem Eng Asp. 2007;293(1–3):185.

    Article  Google Scholar 

  64. Chen DP, Zhu G, Zhu XG, Qiao XL, Chen JG. Controlled synthesis of monodisperse silver nanocubes via a solvothermal method. J Mater Sci Mater Electron. 2011;22(12):1788.

    Article  Google Scholar 

  65. Wiley B, Sun YG, Xia YN. Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir. 2005;21(18):8077.

    Article  Google Scholar 

  66. Ma JJ, Zhan MS. Rapid production of silver nanowires based on high concentration of AgNO3 precursor and use of FeCl3 as reaction promoter. RSC Adv. 2014;4(40):21060.

    Article  Google Scholar 

  67. Lee JH, Lee P, Lee D, Lee SS, Ko SH. Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth. Cryst Growth Des. 2012;12(11):5598.

    Article  Google Scholar 

  68. Lee P, Lee J, Lee H, Yeo J, Hong S, Nam KH, Lee D, Lee SS, Ko SH. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater. 2012;24(25):3326.

    Article  Google Scholar 

  69. Liu SH, Sun BM, Li JG, Chen JL. Silver nanowires with rounded ends: ammonium carbonate-mediated polyol synthesis, shape evolution and growth mechanism. CrystEngComm. 2014;16(2):244.

    Article  Google Scholar 

  70. Liu JH, Tsai CY, Chiu YH, Hsieh FM. The fabrication of polycrystalline silver nanowires via self-assembled nanotubesat controlled temperature. Nanotechnology. 2009;20(3):035301.

    Article  Google Scholar 

  71. Liu JH, Hsieh FM. Fabrication of polycrystalline silver nanowires via reversed micelle with amphiphilic diblock copolymer and aluminum oxide template at controlled temperature. Polym Compos. 2010;31(8):1352.

    Google Scholar 

  72. Tsuji M, Matsumoto K, Jiang P, Matsuo R, Tang XL, Karnarudin KSN. Roles of Pt seeds and chloride anions in the preparation of silver nanorods and nanowires by microwave-polyol method. Colloids Surf A Physicochem Eng Asp. 2008;316(1–3):266.

    Article  Google Scholar 

  73. Yang Y, Hu YY, Xiong XH, Qin YZ. Impact of microwave power on the preparation of silver nanowires via a microwave-assisted method. RSC Adv. 2013;3(22):8431.

    Article  Google Scholar 

  74. Ju WG, Zhang XH, Wu SK. Wet chemical synthesis of Ag nanowires array at room temperature. Chem Lett. 2005;34(4):510.

    Article  Google Scholar 

  75. Maddanimath T, Kumar A, D’Arcy-Gall J, Ganesan PG, Vijayamohanan K, Ramanath G. Wet-chemical templateless assembly of metal nanowires from nanoparticles. Chem Commun. 2005;11:1435.

    Article  Google Scholar 

  76. Chen M, Wang C, Wei X, Diao G. Rapid synthesis of silver nanowires and network structures under cuprous oxide nanospheres and application in surface-enhanced Raman scattering. J Phys Chem C. 2013;117(26):13593.

    Article  Google Scholar 

  77. Ngoc-Thang N, Liu JH. Wet chemical synthesis of silver nanowires based on a soft template of cholesteryl pyridine carbamate organogel. Sci Adv Mater. 2015;7(7):1282.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Nature Science Foundation of China (Nos. 51003060 and 51101103), Shenzhen Science and Technology Research Program (Nos. JCYJ20130329105010137 and JCYJ 20150331142303052), and Nanshan District Special Funds (No. FG2013JNYF0015A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, XZ., Gong, WY., Kuang, MS. et al. Progress in application and preparation of silver nanowires. Rare Met. 35, 289–298 (2016). https://doi.org/10.1007/s12598-016-0695-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0695-6

Keywords

Navigation