Skip to main content
Log in

Controlled synthesis of monodisperse silver nanocubes via a solvothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silver nanostructures have been synthesized via a simple solvothermal method by adding sodium sulfide (Na2S) into the solution. The morphologies of products are controlled by the concentration of Ag2S formed in the initial stage. A low-concentration Ag2S (12.5 ~ 50 μM) acts as the catalysis, leading to the formation of silver nanocubes with controllable sizes. However, a high-concentration Ag2S (100 μM) mainly acts as the controlling agent. It facilitates the synthesis of silver nanowires. Reaction conditions, the reaction temperature and the molar ratio of the repeating unit of PVP to AgNO3 (R), have also been investigated. A possible mechanism is proposed to interpret the synthesis of silver nanocubes and nanowires. Finally, our results indicate that this strategy provides a simple route to prepare silver nanocubes with adjustable sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.C. Cao, R. Jin, C.A. Mirkin, Science 297, 1536 (2002)

    Article  CAS  Google Scholar 

  2. Z.L. Wang, T.S. Ahmad, M.A. El-Sayed, Surf. Sci. 380, 302 (1997)

    Article  CAS  Google Scholar 

  3. N. Rosi, C. Mirkin, Chem. Rev. 105, 1547 (2005)

    Article  CAS  Google Scholar 

  4. C. Salzemann, I. Lisiecki, A. Brioude, J. Urban, M.-P. Pileni, J. Phys. Chem. B 108, 13242 (2004)

    Article  CAS  Google Scholar 

  5. C. Burda, X. Chen, R. Narayanan, M. El-Sayed, Chem. Rev. 105, 1025 (2005)

    Article  CAS  Google Scholar 

  6. J. Beermann, S.I. Bozhevolnyi, V. Coello, Phys. Rev. B 73, 115408 (2006)

    Article  Google Scholar 

  7. H.J. Jiang, K.S. Moon, F. Hua, C.P. Wong, Chem. Mater. 19, 4482 (2007)

    Article  CAS  Google Scholar 

  8. M. Rycenga, M.H. Kim, P.H.C. Camargo, C. Cobley, Z.Y. Li, Y.N. Xia, J. Phys. Chem. A 113, 3932 (2009)

    Article  CAS  Google Scholar 

  9. A. Ono, J.I. Kato, S. Kawata, Phys. Rev. Lett. 95, 267407 (2005)

    Article  Google Scholar 

  10. M.A. El-Sayed, Acc. Chem. Res. 34, 257 (2001)

    Article  CAS  Google Scholar 

  11. J.B. Jackson, N.J. Halas, J. Phys. Chem. B 105, 2473 (2001)

    Article  Google Scholar 

  12. G.I.N. Waterhouse, G.A. Bowmaker, J.B. Metson, Appl. Catal. A 266, 257 (2004)

    Article  CAS  Google Scholar 

  13. J. Reyes-Gasga, J.L. Elechiguerra, C. Liu, A. Camacho-Bragado, J.M. Montejano-Carrizales, M.J. Yacaman, J. Cryst. Growth 286, 162 (2006)

    Article  CAS  Google Scholar 

  14. S.E. Skrabalak, B.J. Wiley, M. Kim, E.V. Formo, Y.N. Xia, Nano. Lett. 8, 2077 (2008)

    Article  CAS  Google Scholar 

  15. K.K. Caswell, C.M. Bender, C.J. Murphy, Nano. Lett. 3, 667 (2003)

    Article  CAS  Google Scholar 

  16. P.S. Mdluli, N. Revaprasadu, J. Alloys Compd. 469, 519 (2009)

    Article  CAS  Google Scholar 

  17. W.C. Zhang, X.L. Wu, H.T. Chen, Y.J. Gao, J. Zhu, G.S. Huang, P.K. Chu, Acta Mater. 56, 2508 (2008)

    Article  CAS  Google Scholar 

  18. M.J. Rosemary, T. Pradeep, J. Colloid Interface Sci. 268, 81 (2003)

    Article  CAS  Google Scholar 

  19. M. Tsuji, K. Matsumoto, P. Jiang, R. Matsuo, X.L. Tang, K.S.N. Kamarudin, Colloids Surf. A Physicochem. Eng. Aspects 316, 266 (2008)

    Article  CAS  Google Scholar 

  20. M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, T. Tsuji, Chem. Eur. J. 11, 440 (2005)

    Article  CAS  Google Scholar 

  21. M. Starowicz, B. Stypula, J. Banas, Electrochem. Commun. 8, 227 (2006)

    Article  CAS  Google Scholar 

  22. J.C. Bazán, M. Sola, C. Janyistabro, H. Hofmeister, M. Dubiel, J. Non-Cryst. Solids 357, 1527 (2011)

    Article  Google Scholar 

  23. K.J. Sreeram, M. Nidhin, B.U. Nair, Bull. Mater. Sci. 31, 937 (2008)

    Article  CAS  Google Scholar 

  24. P.V. Adhyapak, P. Karandikar, K. Vijayamohanan, A.A. Athawale, A.J. Chandwadkar, Mater. Lett. 58, 1168 (2004)

    Article  CAS  Google Scholar 

  25. S. Bhattacharyya, S.K. Saha, D. Chakravorty, Appl. Phys. Lett. 77, 3770 (2000)

    Article  CAS  Google Scholar 

  26. S. Behrens, J. Wu, W. Habicht, E. Unger, Chem. Mater. 16, 3085 (2004)

    Article  CAS  Google Scholar 

  27. V. Venkatpurwar, V. Pokharkar, Mater. Lett. 65, 999 (2011)

    Article  CAS  Google Scholar 

  28. X.G. Wen, Y.T. Xie, M.W.C. Mak, K.Y. Cheung, X.Y. Li, R. Renneberg, S. Yang, Langmuir 22, 4836 (2006)

    Article  CAS  Google Scholar 

  29. J.W. Bai, Y. Qin, C.Y. Jiang, L.M. Qi, Chem. Mater. 19, 3367 (2007)

    Article  CAS  Google Scholar 

  30. R. Sarkar, P. Kumbhakar, A.K. Mitra, R.A. Ganeev, Curr. Appl. Phys. 10, 853 (2010)

    Article  Google Scholar 

  31. J. Zhu, C. Kan, X. Zhu, J. Wang, M. Han, Y. Zhao, B. Wang, G. Wang, J. Mater. Res. 22, 1479 (2007)

    Article  Google Scholar 

  32. W.J. Zhang, P. Chen, Q.S. Gao, Y.H. Zhang, Y. Tang, Chem. Mater. 20, 1699 (2008)

    Article  CAS  Google Scholar 

  33. S. Liu, R.J. Wehmschulte, G. Lian, C.M. Burba, J. Solid State Chem. 179, 696 (2006)

    Article  CAS  Google Scholar 

  34. M.M. Juibari, S. Abbasalizadeh, G.S. Jouzani, M. Noruzi, Mater. Lett. 65, 1014 (2011)

    Article  CAS  Google Scholar 

  35. D. Yu, V.W.-W. Yam, J. Am. Chem. Soc. 126, 13200 (2004)

    Article  CAS  Google Scholar 

  36. S. Kundu, V. Maheshwari, S. Niu, R.F. Saraf, Nanotechnology 19, 065604 (2008)

    Article  Google Scholar 

  37. Y.G. Sun, Y.N. Xia, Science 298, 2176 (2002)

    Article  CAS  Google Scholar 

  38. S.H. Im, Y.T. Lee, B.J. Wiley, Y.N. Xia, Angew. Chem. Int. Ed. 117, 2192 (2005)

    Article  Google Scholar 

  39. D. Chen, X. Qiao, X. Qiu, J. Chen, R. Jiang, J. Mater. Sci. Mater. Electron. 22, 6 (2011)

    Article  Google Scholar 

  40. D. Chen, X. Qiao, X. Qiu, J. Chen, R. Jiang, J. Colloid Interf. Sci. 344, 286 (2010)

    Article  CAS  Google Scholar 

  41. J.P. Kottmann, O.J.F. Martin, D.R. Smith, S. Schultz, Phys. Rev. B 64, 235402 (2001)

    Article  Google Scholar 

  42. I.O. Sosa, C. Noguez, R.G. Barrera, J. Phys. Chem. B 107, 6269 (2003)

    Article  CAS  Google Scholar 

  43. A. Slistan-Grijalva, R. Herrera-Urbina, J.F. Rivas-Silva, M. Ávalos-Borja, F.F. Castillón-Barraza, A. Posada-Amarillas, Physica E 27, 104 (2005)

    Article  CAS  Google Scholar 

  44. Y.G. Sun, Y.N. Xia, Analyst 128, 686 (2003)

    Article  CAS  Google Scholar 

  45. K.L. Kelly, E. Coronado, L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003)

    Article  CAS  Google Scholar 

  46. C. Chen, L. Wang, H.J. Yu, J.J. Wang, J.F. Zhou, Q.H. Tan, L.B. Deng, Nanotechnology 18, 115612 (2007)

    Article  Google Scholar 

  47. B.J. Wiley, Y.G. Sun, B. Mayers, Y.N. Xia, Chem. Eur. J. 11, 454 (2005)

    Article  CAS  Google Scholar 

  48. Y.G. Sun, B. Mayers, T. Herricks, Y.N. Xia, Nano. Lett. 3, 955 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Analytical and Testing Center, Huazhong University of Science and Technology, P.R. China, for the test of FSEM images. The authors wish to thank Dr. Yongming Sun for discussions and his valuable advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueliang Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Zhu, G., Zhu, X. et al. Controlled synthesis of monodisperse silver nanocubes via a solvothermal method. J Mater Sci: Mater Electron 22, 1788–1795 (2011). https://doi.org/10.1007/s10854-011-0364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0364-3

Keywords

Navigation