Skip to main content
Log in

Microstructure evolution of Ti–46Al–6Nb–(Si,B) alloys during heat treatment with W addition

  • Published:
Rare Metals Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The cast ingots of Ti–46Al–6Nb–0.25Si–0.2B and Ti–46Al–6Nb–0.5W–0.25Si–0.2B (at%) were made by induction skull melting (ISM) technique. A series of heat treatments (HTs) were conducted to research the microstructure evolution of both alloys. Microstructure and tensile property were examined by scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM), and tensile testing machine. The results show that microsegregation (liquid segregation and solid segregation) is exacerbated by the addition of 0.5 at% W; the addition of Nb, W in TiAl alloy makes the phase transition difficultly take place; then, the microstructures and tensile properties of both alloys are improved after certain HT processes; finally, the thicknesses of the γ/α2 lamellae after a certain HT process are significantly affected by the number of residual γ phases before the furnace-cooling moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kim Y-W. Intermetallic alloys based on gamma titanium aluminide. JOM. 1989;41(7):24.

    Article  Google Scholar 

  2. Wu XH. Review of alloy and process development of TiAl alloys. Intermetallics. 2006;14(10–11):1114.

    Article  Google Scholar 

  3. Pflum R, Friedle S, Schütze M. Oxidation protection of γ-TiAl-based alloys—a review. Intermetallics. 2014;56:2.

    Google Scholar 

  4. Kim Y-J, Sung S-Y. Economic net-shape forming of TiAl alloys for automotive parts. Intermetallics. 2006;14(10–11):1163.

    Google Scholar 

  5. Appel F, Wagner R. Microstructure and deformation of two-phase γ-titanium aluminides. Mater Sci Eng Rep. 1998;22(5):187.

    Article  Google Scholar 

  6. Zhu HL, Seo DY, Maruyama K. Strengthening of lamellar TiAl alloys by precipitation bands of β0 particles. Mater Sci Eng A. 2009;510–511:14.

    Article  Google Scholar 

  7. Bystrzanowski S, Bartels A, Clemens H, Gerling R, Schimansky FP, Dehm G, Kestler H. Creep behaviour and related high temperature microstructural stability of Ti–46Al–9Nb sheet material. Intermetallics. 2005;13(5):515.

    Article  Google Scholar 

  8. Zhang WJ, Appel F. Effect of Al content and Nb addition on the strength and fault energy of TiAl alloys. Mater Sci Eng A. 2002;329–331:650.

    Google Scholar 

  9. Zhang H, He LL, Ye HQ, Seo DY. An analysis of growth direction of β phase precipitates in a TiAlW alloy. Scr Mater. 2003;48(9):1232.

    Article  Google Scholar 

  10. Chen GL, Wang ZQ, Sun ZQ. Continuous ordering in the TiAl + Nb system. Intermetallics. 1994;2(1):31.

    Article  Google Scholar 

  11. Yoshihara M, Miura K. Effects of Nb addition on oxidation behavior of TiAl. Intermetallics. 1995;3(5):357.

    Article  Google Scholar 

  12. Zhang SZ, Kong FT, Chen YY, Liu ZY, Lin JP. Phase transformation and microstructure evolution of differently processed Ti–45Al–9Nb–Y alloy. Intermetallics. 2012;31:208.

    Article  Google Scholar 

  13. Lin JP, Zhao LL, Li GY, Zhang LQ, Song XP, Ye F, Chen GL. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys. Intermetallics. 2011;19(2):131.

    Article  Google Scholar 

  14. Chen GL, Xu XJ, Teng ZK, Wang YL, Lin JP. Microsegregation in high Nb containing TiAl alloy ingots beyond laboratory scale. Intermetallics. 2007;15(5–6):625.

    Article  Google Scholar 

  15. Herzig C, Przeorski T, Friesel M, Hisker F, Divinski S. Tracer solute diffusion of Nb, Zr, Cr, Fe, and Ni in γ-TiAl: effect of preferential site occupation. Intermetallics. 2001;9(6):461.

    Article  Google Scholar 

  16. Breuer J, Wilger T, Friesel M, Herzig C. Interstitial and substitutional diffusion of metallic solutes in Ti3Al. Intermetallics. 1999;7:382.

    Article  Google Scholar 

  17. Mishin M, Herzig C. Diffusion in the Ti–Al system. Acta Mater. 2000;48(3):594.

    Article  Google Scholar 

  18. Witusiewicz VT, Bondar AA, Hecht U. The Al–B–Nb–Ti system: III. Thermodynamic reevaluation of the constituent binary system Al–Ti. J Alloys Compd. 2008;465(1–2):64.

    Article  Google Scholar 

  19. Schuster JC, Palm M. Reassessment of the binary aluminum–titanium phase diagram. J Phase Equilib Diffus. 2006;27(3):255.

    Article  Google Scholar 

  20. Huang ZW. Inhomogeneous microstructure in highly alloyed cast TiAl-based alloys, caused by microsegregation. Scr Mater. 2005;52(10):1021.

    Article  Google Scholar 

  21. Schmoelzer T, Liss KD, Kirchlechner C, Mayer S, Stark A, Peel M, Clemens H. An in situ high-energy X-ray diffraction study on the hot-deformation behavior of a β-phase containing TiAl alloy. Intermetallics. 2012;39:26.

    Google Scholar 

  22. Clemens H, Chladil HF, Wallgram W, Zickler GA, Gerling R, Liss KD, Kremmer S, Guther V, Smarsly W. In and ex situ investigations of the β-phase in a Nb and Mo containing γ-TiAl based alloy. Intermetallics. 2008;16(6):830.

    Article  Google Scholar 

  23. Zghal S, Thomas M, Couret A. Structural transformations activated during the formation of the lamellar microstructure of TiAl alloys. Intermetallics. 2005;13(9):1008.

    Article  Google Scholar 

  24. Mayer J, Giannuzzi LA, Kamino T, Michael J. TEM sample preparation and FIB-induced damage. MRS Bull. 2007;32(5):400.

    Article  Google Scholar 

  25. Blackburn MJ. Some aspects of phase transformation in titanium alloys. In: Proceedings of the Science, Technology and Application of Titanium; London; 1970. 633.

  26. Soboyejo WO, Srivatsan TS, Fraser HL. Deformation and fracture of ordered intermetallic materials III. Met Mater Soc. 1996;78:217.

    Google Scholar 

  27. Godfrey A, Hua D, Lorettoa MH. The role of the α2 phase in the transmission of slip in lamellar TiAl-based alloys. Philos Mag A. 1998; 77(2):287.

  28. Wiezorek JMK, DeLuca PM, Fraser HL. Mechanisms of plasticity and fracture of partially lamellar titanium aluminum. Intermetallics. 2000;8(2):99.

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Nos. 51001040, 51371064) and the Shanghai Aerospace Science and Technology Innovation Fund (No. SAST201428).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Yong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, SZ., Xiao, SL., Chen, YY. et al. Microstructure evolution of Ti–46Al–6Nb–(Si,B) alloys during heat treatment with W addition. Rare Met. 35, 85–92 (2016). https://doi.org/10.1007/s12598-015-0653-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0653-8

Keywords

Navigation