Skip to main content
Log in

Morphology and activity relationships of macroporous CuO–ZnO–ZrO2 catalysts for methanol synthesis from CO2 hydrogenation

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A series of macroporous CuO–ZnO–ZrO2 (CZZ) catalysts with different Zn/Zr ratios were successfully prepared by template method and characterized by X-ray diffraction (XRD), N2 adsorption, reactive N2O adsorption, scanning electron microscopy (SEM), H2 temperature-programmed reduction (H2-TPR), and transmission electron microscopy (TEM). The activity of the catalysts was tested for methanol synthesis from CO2 hydrogenation. It is found that the increase in the Zn/Zr ratio could lead to the sintering of the catalysts, destroying the macroporous structure integrity. The macroporous CZZ catalysts own lower Zn/Zr ratio, exhibiting a better morphology and activity. For comparison, the conventional nonporous CZZ catalysts were also investigated. The results show that the CZZ catalysts with macroporous structure own smaller particles, higher CO2 conversion, and CH3OH yield. It reveals that the macroporous structure could inhibit the growth of the particle size, and the special porous structure is favorable for diffusion and penetration of CO2, which could improve the catalytic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma Y, Sun Q, Wu D, Fan WH, Deng JF. A gel-oxalate co-precipitation process for preparation of Cu/ZnO/Al2O3 ultrafine catalyst for methanol synthesis from CO2 + H2: (II) effect of various calcinations conditions. Appl Catal A. 1999;177(2):177.

    Article  Google Scholar 

  2. Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F. Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. J Catal. 2007;249(2):185.

    Article  Google Scholar 

  3. Zhang YP, Fei JH, Yu YM, Zheng XM. Methanol synthesis from CO2 hydrogenation over Cu based catalyst supported on zirconia modified γ-Al2O3. Energ Conv Manag. 2006;47(18–19):3360.

    Article  Google Scholar 

  4. Sloczynski J, Grabowski R, Kozowska A, Olszewski P, Lachowskab M, Skrzypek J, Stoch J. Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2. Appl Catal A. 2003;249(1):129.

    Article  Google Scholar 

  5. Raudaskoski R, Niemela MV, Keiski RL. The effect of ageing time on co-precipitated Cu/ZnO/ZrO2 catalysts used in methanol synthesis from CO2 and H2. Top Catal. 2007;45(1–4):57.

    Article  Google Scholar 

  6. Ma Y, Sun Q, Wu D, Fan WH, Zhang YL, Deng JF. A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation. Appl Catal A. 1998;171(1):45.

    Article  Google Scholar 

  7. Nitta Y, Fujimatsu T, Okamoto Y, Imanaka T. Effect of starting salt on catalytic behaviour of Cu–ZrO2 catalysts in methanol synthesisfrom carbon dioxide. Catal Lett. 1993;17(1–2):157.

    Article  Google Scholar 

  8. Sloczynski J, Grabowski R, Kozlowska A, Olszewski P, Stoch J, Skrzypek J, Lachowska M. Catalytic activity of the M/(3ZnO–ZrO2) system (M = Cu, Ag, Au) in the hydrogenation of CO2 to methanol. Appl Catal A. 2004;278(1):11.

    Article  Google Scholar 

  9. Sloczynski J, Grabowski R, Olszewski P, Kozlowska A, Stoch J, Lachowska M, Skrzypek J. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2. Appl Catal A. 2006;310(2):127.

    Article  Google Scholar 

  10. Choi Y, Futagami K, Fujitani T, Nakamura J. The role of ZnO in Cu/ZnO methanol synthesis catalysts—morphology effect or active site model? Appl Catal A. 2001;208(1–2):163.

    Article  Google Scholar 

  11. Koppel RA, Stocker C, Baiker A. Copper- and silver–zirconia aerogels: preparation, structural properties and catalytic behavior in methanol synthesis from carbon dioxide. J Catal. 1998;179(2):515.

    Article  Google Scholar 

  12. Carnes CL, Klabunde KJ. The catalytic methanol synthesis over nanoparticle metal oxide catalysts. J Mol Catal A Chem. 2003;194(1–2):227.

    Article  Google Scholar 

  13. Ahmad M, Ahmed E, Hong ZL, Jiao XL, Abbas T, Khalid NR. Enhancement in visible light-responsive photocatalytic activity byembedding Cu-doped ZnO nanoparticles on multi-walled carbonnanotubes. Appl Surf Sci. 2013;285(Part B):702.

    Article  Google Scholar 

  14. Huang J, Hu L, Zhang HH, Zhang J, Yang XP, Li DH, Zhu LP, Ye ZZ. A facile method for the synthesis of tapered ZnO: Cu nanorod arraysand its secondary growth. J Cryst Growth. 2012;351(1):93.

    Article  Google Scholar 

  15. Gu D, Jia CJ, Bongard H, Spliethoff B, Weidenthaler C, Schmidt W, Schüth F. Ordered mesoporous Cu–Ce–O catalysts for CO preferential oxidationin H2-rich gases: influence of copper content and pretreatmentconditions. Appl Catal B. 2014;152–153(2):11.

    Article  Google Scholar 

  16. Wei YC, Zhao Z, Li T, Liu J, Duan AJ, Jiang GY. The novel catalysts of truncated polyhedron Pt nanoparticlessupported on three-dimensionally ordered macroporous oxides (Mn, Fe, Co, Ni, Cu) with nanoporous walls for soot combustion. Appl Catal B. 2014;146(2):57.

    Article  Google Scholar 

  17. Yuan P, Liu D, Tan DY. Surface silylation of mesoporous/macroporous diatomite (diatomaceous earth)and its function in Cu(II) adsorption: the effects of heating pretreatment. Microporous Mesoporous Mater. 2013;170(4):9.

    Article  Google Scholar 

  18. Zou D, Ma S, Wan R, Park M, Sun L. Model filled polymers. V. Synthesis of crosslinked monodisperse polymethacrylate beads. J Polym Sci Part A. 1992;30(7):1463.

    Article  Google Scholar 

  19. Gao WG, Wang H, Wang YH. Dimethyl ether synthesis from CO2 hydrogenation on La-modified CuO–ZnO–Al2O3/HZSM bifunctional catalysts. J Rare Earths. 2013;31(5):470.

    Article  Google Scholar 

  20. Natesakhawat S, Lekse JW, Baltrus JP. Active sites and structure—activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol. ACS Catal. 2012;2(8):1667.

    Article  Google Scholar 

  21. Guo XM, Mao DS, Lu GZ, Wang S, Wu GS. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid-state reaction. Catal Commun. 2011;12(12):1095.

    Article  Google Scholar 

  22. Guo XM, Mao DS, Lu GZ, Wang S, Wu GS. Glycine–nitrate combustion synthesis of CuO–ZnO–ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. J Catal. 2010;271(2):178.

    Article  Google Scholar 

  23. Ribeiro NFP, Souza MMVM, Schmal M. Combustion synthesis of copper catalysts for selective CO oxidation. J Power Sources. 2008;179(1):329.

    Article  Google Scholar 

  24. Zhang YP, Fei JH, Yu YM, Zheng XM. Methanol synthesis from CO2 hydrogenation over Cu based catalyst supported on zirconia modified γ-Al2O3. Energy Convers Manage. 2006;47(18–19):3360.

    Article  Google Scholar 

  25. Melian-Cabrera I, Lopez Granados M, Fierro JLG. Pd-modified Cu–Zn catalysts for methanol synthesis from CO2/H2 mixtures: catalytic structures and performance. J Catal. 2002;210(2):285.

    Article  Google Scholar 

  26. Breen JP, Ross JRH. Methanol reforming for fuel-cell applications: development of zirconia-containing Cu–Zn–Al catalysts. Catal Today. 1999;51(3–4):521.

    Article  Google Scholar 

  27. Chary KVR, Sagar GV, Naresh D. Characterization and reactivity of copper oxide catalysts supported on TiO2–ZrO2. J Phys Chem B. 2005;109(19):9437.

    Article  Google Scholar 

  28. Avgouropoulos G, Ioannides T. Selective CO oxidation over CuO–CeO2 catalysts prepared via the urea–nitrate combustion method. Appl Catal A. 2003;244(1):155.

    Article  Google Scholar 

  29. Avgouropoulos G, Ioannides T, Matralis H. Influence of the preparation method on the performance of CuO–CeO2 catalysts for the selective oxidation of CO. Appl Catal B. 2005;56(1–2):87.

    Article  Google Scholar 

  30. Bonura G, Arena F, Mezzatesta G. Role of the ceria promoter and carrier on the functionality of Cu-based catalysts in the CO-to-methanol hydrogenation reaction. Catal Today. 2011;171(1):251.

    Article  Google Scholar 

  31. Shishido T, Yamamoto M, Li D. Water–gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation. Appl Catal A. 2006;303(1):62.

    Article  Google Scholar 

  32. Wang LC, Liu Q, Chen M, Liu YM, CaoY, He HY, Fan KN. Structural evolution and catalytic properties of nanostructured Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation technique. J Phys Chem C. 2007;111(44):16549.

Download references

Acknowledgments

This study was financially supported by the National Key Technologies Research & Development Program of China (No. 2011BAC01B03), the National Natural Science Foundation of China (No. 51304099), the Applied Basic Research Program of Yunnan Province (No. 2013FZ035), and the Testing and Analyzing Foundation of Kunming University of Science and Technology (No. 2010213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Gui Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YH., Gao, WG., Wang, H. et al. Morphology and activity relationships of macroporous CuO–ZnO–ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. Rare Met. 35, 790–796 (2016). https://doi.org/10.1007/s12598-015-0520-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0520-7

Keywords

Navigation