Skip to main content
Log in

Thermodynamic model for precipitation of carbonitrides in microalloyed steels and its application in Ti–V–C–N system

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Based on mass balance and solubility product equations, a thermodynamic model enabling the calculation of equilibrium carbonitride composition and relative amounts as a function of steel composition and temperature was developed, which provides a method to estimate the carbonitride complete dissolution temperature for different steel compositions. Actual carbonitride precipitation behavior was further verified in Ti–V–C–N microalloyed steel system. The model suggests that for higher [V] and [Ti] dissolved in steels, it is available to decrease the addition of C and N during alloy composition design. The resultant longer fatigue life of the modified steel could be attributed to the more [V] and [Ti] dissolved in the matrix, inducing finer dispersion of carbonitrides. Therefore, this model is proved to be effective in determining better chemical composition for high-performance steels, leading to possible reductions in the cost of production and improvements in the combined mechanical properties of the steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gladman T. The Physical Metallurgy of Microalloyed Steels. London: The Institute of Materials; 1997. 3.

  2. Pardo A, Merino MC, Coy AE, Viejo F, Carboneras M, Arrabal F. Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels. Acta Mater. 2007;55(7):2239.

    Article  Google Scholar 

  3. Xu G, Gan XL, Ma GJ, Luo F, Zou H. The development of Ti-alloyed high strength microalloy steel. Mater Des. 2010;31(6):2891.

    Article  Google Scholar 

  4. Cao YB, Xiao FR, Qiao GY, Liao B. Quantitative research on dissolving of Nb in high Nb microalloyed steels during reheating. J Iron Steel Res Int. 2014;21(6):596.

    Article  Google Scholar 

  5. Li H, Liang JL, Feng YL, Huo DX. Microstructure transformation of X70 pipeline steel welding heat-affected zone. Rare Met. 2014;33(4):493.

    Article  Google Scholar 

  6. Speer JG, Michael JR, Hansen SS. Carbonitride precipitation in niobium/vanadium microalloyed steels. Metall Trans A. 1987;18(2):211.

    Article  Google Scholar 

  7. Liu WJ, Jonas JJ. Calculation of the Ti(C y N1−y )–Ti4C2S2–MnS-austenite equilibrium in Ti-bearing steels. Metall Trans A. 1989;20(8):1361.

    Article  Google Scholar 

  8. Prikryl M, Kroupa A, Weatherly GC, Subramanian SV. Precipitation behavior in a medium carbon, Ti–V–N microalloyed steel. Metall Mater Trans A. 1996;27(5):1149.

    Article  Google Scholar 

  9. Gao N, Baker TN. Influence of AIN precipitation on thermodynamic parameters in C–Al–V–N microalloyed steels. ISIJ Int. 1997;37(6):596.

    Article  Google Scholar 

  10. Wang CL, Li JS, Zhao HM, Chen YF. Influence factors on solid-solution of carbonitride of niobium in steel. J Univ Sci Technol B. 2009;31(S1):194.

    Google Scholar 

  11. Xiang S, Liu GQ, Li CR, Wang AD, Han QL. Thermodynamic model for carbonitride precipitation in low carbon steels. J Univ Sci Technol B. 2006;28(9):818.

    Google Scholar 

  12. Uhm SH, Moon J, Lee CH, Yoon JY, Lee BS. Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe–C–Mn steels: considering the effect of in initial grain size on isothermal growth behavior. ISIJ Int. 2004;4(7):1230.

    Article  Google Scholar 

  13. Takechi Hiroshi, Hasimoto Shunichi, Imagumbai Masana. How to Use the Nb to Improve the Performance of the Steel. Beijing: Metallurgical Industry Press; 2007. 146.

  14. Goldschmidt HJ. Interstitial Alloys. London: Butterworth and Co; 1967. 109.

  15. Hudd RC, Jones A, Kale MN. A method for calculating the solubility and composition of carbonitride precipitates in steel with particular reference to niobium carbonitride. J Iron Steel Inst. 1971;209(2):121.

    Google Scholar 

  16. Yong QL. The Second Phases in Steels. Beijing: Metallurgical Industry Publishing; 2006. 56.

  17. Vedani M, Mannucci A. Effects of titanium addition on precipitate and microstructural control in C–Mn microalloyed steels. ISIJ Int. 2012;42(12):1520.

    Article  Google Scholar 

  18. Gan Y. Practical Manual of Modern Continuous Casting Steel. Beijing: Metallurgical Industry Press; 2010. 23.

  19. Matsuda S, Okumura N. Effect of distribution of Ti nitride precipitate particles on the austenite grain size of low carbon and low alloy steels. Trans Iron Steel Inst Jpn. 1978;18(4):198.

    Google Scholar 

  20. Song R, Ponge D, Raabe D. Mechanical properties of an ultrafine grained C–Mn steel processed by warm deformation and annealing. Acta Mater. 2005;53(18):4881.

    Article  Google Scholar 

  21. Kimura U, Inoue T, Yin F, Tsuzaki K. Inverse temperature dependence of toughness in an ultrafine grain-structure steel. Science. 2008;320(5879):1057.

    Article  Google Scholar 

  22. Ren AC, Ji Y, Zhou GF, Yuan ZX, Han B, Li Y. Hot deformation behaviour of V-microalloyed steel. J Iron Steel Res Int. 2010;17(8):55.

    Article  Google Scholar 

  23. Hu J, Du LX, Wang JJ. Effect of V on intragranular ferrite nucleation of high Ti bearing steel. Scr Mater. 2013;68(12):953.

    Article  Google Scholar 

  24. Wang HP, Sun LF, Shi JJ, Liu CJ, Jiang MF, Zhang C. Inclusions and solidification structures of high pure ferritic stainless steels dual stabilized by niobium and titanium. Rare Met. 2014;33(6):761.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Science and Technology Support Project of Jiangxi Province (No. 20112BBE50006) and Young Scientists of Jiangxi Province Training Objects (No. 20133BCB23032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Chao Zhuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YL., Zhuo, LC., Chen, MW. et al. Thermodynamic model for precipitation of carbonitrides in microalloyed steels and its application in Ti–V–C–N system. Rare Met. 35, 735–741 (2016). https://doi.org/10.1007/s12598-015-0495-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0495-4

Keywords

Navigation