Skip to main content
Log in

Magnetic properties and magnetocaloric effects of PrSi

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Magnetic properties and magnetocaloric effects (MCEs) of the PrSi compound were studied. The PrSi compound undergoes a second-order ferromagnetic-to-paramagnetic transition at the Curie temperature of T C = 52 K. Large MCE with no magnetic hysteresis loss is observed around T C. The maximum values of magnetic entropy change (ΔS) are found to be −8.6 and −15.3 J·kg−1·K−1 for the magnetic field changes of 0–2 T and 0–5 T, respectively. The large ΔS with no hysteresis makes PrSi compound a competitive candidate for magnetic refrigerant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tishin AM, Spichkin YI. The magnetocaloric Effect and its Applications. Bristol: IOP Publishing; 2003. p. 1.

    Book  Google Scholar 

  2. Gschneidner KAJr, Pecharsky VK, Tsokol AO. Recent developments in magnetocaloric materials. Rep Prog Phys. 2005;68(6):1479.

    Article  Google Scholar 

  3. Brück E. In: Buschow KHJ, editor. Handbook of Magnetic Materials. Amsterdam: North-Holland Publishing; 2008. 235.

    Google Scholar 

  4. Shen BG, Sun JR, Hu FX, Zhang HW, Cheng ZH. Recent progress in exploring magnetocaloric materials. Adv Mater. 2009;21(45):4545.

    Article  Google Scholar 

  5. Shen BG, Hu FX, Dong QY, Sun JR. Magnetic properties and magnetocaloric effects in NaZn13-type La(Fe, Al)13-based compounds. Chin Phys B. 2013;22(1):017502.

    Article  Google Scholar 

  6. Pecharsky VK, Gschneidner KAJr. Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett. 1997;78(23):4494.

    Article  Google Scholar 

  7. Hu FX, Shen BG, Sun JR, Zhang XX. Great magnetic entropy change in La(Fe, M) M = Si, Al with Co doping. Chin Phys. 2000;9(7):550.

    Article  Google Scholar 

  8. Hu FX, Shen BG, Sun JR, Cheng ZH, Rao GH, Zhang XX. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl Phys Lett. 2001;78(23):3675.

    Article  Google Scholar 

  9. Zhang H, Hu FX, Sun JR, Shen BG. Effects of interstitial H and/or C atoms on the magnetic and magnetocaloric properties of La(Fe, Si)13-based compounds. Sci China-Phys Mech Astron. 2013;56(12):2302.

    Article  Google Scholar 

  10. Wada H, Tanabe Y. Giant magnetocaloric effect of MnAs1−x Sb x . Appl Phys Lett. 2001;79(20):3302.

    Article  Google Scholar 

  11. Tegus O, Bruck E, Buschow KHJ, de Boer FR. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature (London). 2002;415:150.

    Article  Google Scholar 

  12. Hu FX, Shen BG, Sun JR. Magnetic entropy change involving martensitic transition in NiMn-based Heusler alloys. Chin Phys B. 2013;22(3):037505.

    Article  Google Scholar 

  13. Zhang XX, Wang FW, Wen GH. Magnetic entropy change in RCoAl (R = Gd, Tb, Dy, and Ho) compounds: candidate materials for providing magnetic refrigeration in the temperature range 10 K–100 K. J Phys: Condens Matter. 2001;13(31):L747.

    Google Scholar 

  14. Chen J, Shen BG, Dong QY, Hu FX, Sun JR. Large reversible magnetocaloric effect caused by two successive magnetic transitions in ErGa compound. Appl Phys Lett. 2009;95(13):132504.

    Article  Google Scholar 

  15. Shen J, Zhao JL, Hu FX, Wu JF, Sun JR, Shen BG. Order of magnetic transition and large magnetocaloric effect in Er3Co. Chin Phys B. 2010;19(4):047502.

    Article  Google Scholar 

  16. Shen J, Li YX, Dong QY, Wang F, Sun JR. Magnetocaloric effect in Gd6Co1.67Si3 compound with a second-order phase transition. Chin Phys B. 2008;17(6):2268.

    Article  Google Scholar 

  17. Dong QY, Zhang HW, Sun JR, Shen BG, Franco V. A phenomenological fitting curve for the magnetocaloric effect of materials with a second-order phase transition. J Appl Phys. 2008;103(11):116101.

    Article  Google Scholar 

  18. Nguyen VN, Tchéou F, Rossat-Mignod J. Magnetic structures of PrSi and NdSi intermetallic alloys. Solid State Commun. 1977;23(11):821.

    Article  Google Scholar 

  19. Iandelli A, Palenzona A. In: Gschneidner KA, Eyring L, editors. Handbook of Physics and Chemistry of Rare Earths. Amsterdam: Elsevier; 1979. 1.

    Google Scholar 

  20. Pinguet N, Weitzer F, Hiebl K, Schuster JC, Noël H. Structural chemistry, magnetism and electrical properties of binary Pr-silicides. J Alloys Compd. 2003;348(1–2):1.

    Article  Google Scholar 

  21. Snyman JL, Strydom AM. Anomalous magnetic ground state in PrSi evidenced by the magnetocaloric effect. J Appl Phys. 2012;111(7):07A943.

    Article  Google Scholar 

  22. Schobinger-Papamantellos P, Buschow KHJ, Rodríguez-Carvajal J. Magnetic phase diagrams of the CrB- and FeB-type HoSi compounds. J Magn Magn Mater. 2011;323(21):2592.

    Article  Google Scholar 

  23. Feng YJ, Silevitch DM, Wang JY, Palmer A, Woo N, Yan JQ, Islam Z, Suslov AV, Littlewood PB, Rosenbaum TF. Evolution of incommensurate spin order with magnetic field and temperature in the itinerant antiferromagnet GdSi. Phys Rev B. 2013;88(13):134404.

    Article  Google Scholar 

  24. Nirmala R, Morozkin AV, Buddhikot D, Nigam AK. Magnetocaloric effect in the binary intermetallic compound DySi. J Magn Magn Mater. 2008;320(6):1184.

    Article  Google Scholar 

  25. Xu ZY, Shen J, Zheng XQ, Zhang H. Magnetocaloric effect in ErSi compound. IEEE Trans on Mag. 2011;47(10):2470.

    Article  Google Scholar 

  26. Mallik R, Sampathkumaran EV, Paulose PL. Large low temperature magnetoresistance and magnetic anomalies in Tb2PdSi3 and Dy2PdSi3. Solid State Commun. 1998;106(3):169.

    Article  Google Scholar 

  27. Singh NK, Suresh KG, Nirmala R, Nigam AK, Malik SK. Effect of magnetic polarons on the magnetic, magnetocaloric, and magnetoresistance properties of the intermetallic compound HoNiAl. J Appl Phys. 2007;101(9):093904.

    Article  Google Scholar 

  28. Pecharsky VK, Gschneidner KAJr. Magnetocaloric effect from indirect measurements: magnetization and heat capacity. J Appl Phys. 1999;86(1):565.

    Article  Google Scholar 

  29. Zhang H, Shen BG, Xu ZY, Shen J, Hu FX, Sun JR, Long Y. Large reversible magnetocaloric effects in ErFeSi compound under low magnetic field change around liquid hydrogen temperature. Appl Phys Lett. 2013;102(9):092401.

    Article  Google Scholar 

  30. Wang LC, Dong QY, Lu J, Shao XP, Mo ZJ, Xu ZY, Sun JR, Hu FX, Shen BG. Low-temperature large magnetocaloric effect in the antiferromagnetic CeSi compound. J Alloys Compd. 2014;587:10.

    Article  Google Scholar 

  31. Samanta T, Das I, Banerjee S. Giant magnetocaloric effect in antiferromagnetic ErRu2Si2 compound. Appl Phys Lett. 2007;91(15):152506.

    Article  Google Scholar 

  32. Franco V, Blázquez JS, Conde A. Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl Phys Lett. 2006;89(22):222512.

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (No. 11274357) and the Hi-Tech Research and Development Program of China (No. 2011AA03A404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Gen Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LC., Shen, BG. Magnetic properties and magnetocaloric effects of PrSi. Rare Met. 33, 239–243 (2014). https://doi.org/10.1007/s12598-014-0310-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0310-7

Keywords

Navigation