Skip to main content
Log in

High magnetic entropy change of Pr1−xDyxNi2 compounds with second-order magnetic phase transition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The structure, magnetic and magnetocaloric effect of Pr1−xDyxNi2 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) compounds have been systematically studied. According to X-ray diffraction data, all samples exhibit MgCu2 laves cubic structure. Despite the addition of Dy element, Pr1−xDyxNi2 series compounds remains second-order magnetic phase transition throughout, but both the maximum magnetic entropy change (ΔSM) and the width at half-maximum of the ΔSM peak (δTFWHM) increase and reach 19.4 J/(kg·K) and 30 K (x = 0.8), respectively, resulting in an increase in the relative cooling power (RCP). Pr1−xDyxNi2 compounds show the potential application of magnetic refrigeration materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. L.W. Li, M. Yan, J. Alloys Compd. 823, 153810 (2020)

    Article  CAS  Google Scholar 

  2. L.W. Li, P. Xu, S.K. Ye, Y. Li, G.D. Liu, D.X. Huo, M. Yan, Acta Mater. 194, 354 (2020)

    Article  CAS  Google Scholar 

  3. Y.K. Zhang, J. Alloys Compd. 787, 1173 (2019)

    Article  CAS  Google Scholar 

  4. N.A. de Oliveira, P.J. von Ranke, Phys. Rep. 489, 89 (2010)

    Article  Google Scholar 

  5. B.G. Shen, J.R. Sun, F.X. Hu, H.W. Zhang, Z.H. Cheng, Adv. Mater. 21, 4545 (2009)

    Article  CAS  Google Scholar 

  6. V.K. Pecharsky, K.A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997)

    Article  CAS  Google Scholar 

  7. Ch. Kuhrt, Th. Schittny, K. Bärner, Phys. Status Solidi (a) 91, 105 (1985)

    Article  CAS  Google Scholar 

  8. O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Nature 415, 150 (2002)

    Article  CAS  Google Scholar 

  9. F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao, X.X. Zhang, Appl. Phys. Lett. 78, 3675 (2001)

    Article  CAS  Google Scholar 

  10. P. Xu, Z.P. Ma, P.F. Wang, H.F. Wang, L.W. Li, Mater. Today Phys. 20, 100470 (2021)

    Article  CAS  Google Scholar 

  11. B.B. Wu, Y.K. Zhang, D. Guo, J. Wang, Z.M. Ren, Ceram. Int. 47, 6290 (2021)

    Article  CAS  Google Scholar 

  12. L.W. Li, Y. Yuan, Y. Qi, Q. Wang, S.Q. Zhou, Mater. Res. Lett. 6, 67 (2018)

    Article  CAS  Google Scholar 

  13. X. Zhou, L. Ma, L. Li, P.L. Dong, Y.B. Guo, Z.F. Gu, J. Supercond. Nov. Magn. 32, 2895 (2019)

    Article  CAS  Google Scholar 

  14. P.L. Dong, L. Ma, J.C. Xiong, T.Y. Chen, S.F. Lu, L. Li, Mater. Res. Express 6, 126102 (2019)

    Article  CAS  Google Scholar 

  15. J.C. Xiong, L. Ma, P.L. Dong, S.F. Lu, L. Li, G.H. Rao, Philos. Mag. Lett. 100, 319 (2020)

    Article  CAS  Google Scholar 

  16. W. Chen, L. Ma, S.F. Lu, J.C. Xiong, L. Li, J. Wang, G.H. Rao, Phys. Status Solidi B 258, 2000566 (2021)

    Article  CAS  Google Scholar 

  17. Z.P. Ma, X.S. Dong, Z.Q. Zhang, L.W. Li, J. Mater. Sci. Technol. 92, 138 (2021)

    Article  Google Scholar 

  18. D. Guo, L.M. Moreno-Ramírez, C. Romero-Muñiz, Y.K. Zhang, J.Y. Law, V. Franco, J. Wang, Z.M. Ren, Sci. China Mater. 64, 2846 (2021)

    Article  CAS  Google Scholar 

  19. Y.K. Zhang, J. Zhu, S. Li, J. Wang, Z.M. Ren, J. Mater. Sci. Technol. 102, 66 (2022)

    Article  Google Scholar 

  20. M. Saidi, L. Bessais, M. Jemmali, J. Phys. Chem. Solids 160, 110343 (2022)

    Article  CAS  Google Scholar 

  21. A. Murtaza, W.L. Zuo, A. Ghani, M. Yaseen, A. Saeed, T.Y. Chang, Z.Y. Dai, C. Zhou, Y. Zhang, S. Yang, X.P. Song, Y. Ren, J. Alloys Compd. 895, 162562 (2022)

    Article  CAS  Google Scholar 

  22. E. Bykov, W. Liu, K. Skokov, F. Scheibel, O. Gutfleisch, S. Taskaev, V. Khovaylo, D. Plakhotskiy, C. Salazar Mejia, J. Wosnitza, T. Gottschall, Phys. Rev. Mater. 5, 095405 (2021)

    Article  CAS  Google Scholar 

  23. E.J.R. Plaza, V.S.R. de Sousa, M.S. Reis, P.J. von Ranke, J. Alloys Compd. 505, 357 (2010)

    Article  CAS  Google Scholar 

  24. J. Voiron, A. Berton, J. Chaussy, Phys. Lett. 50A(1), 17 (1974)

    Article  CAS  Google Scholar 

  25. J. Ćwik, Y. Koshkid’ko, N.A. de Oliveira, K. Nenkov, A. Hackemer, E. Dilmieva, N. Kolchugina, S. Nikitin, K. Rogacki, Acta Mater. 133, 230 (2017)

    Article  Google Scholar 

  26. J. Ćwik, Y. Koshkid’ko, N.A. de Oliveira, A. Mikhailova, K. Nenkov, J. Alloys Compd. 769, 588 (2018)

    Article  Google Scholar 

  27. H. Mori, T. Satoh, T. Fujita, T. Ohtsuka, J. Low Temp. Phys. 49, 397 (1982)

    Article  CAS  Google Scholar 

  28. J. Ćwik, Y. Koshkid’ko, K. Nenkov, E.A. Tereshina, K. Rogacki, J. Alloys Compd. 735, 1088 (2018)

    Article  Google Scholar 

  29. K. Bouziane, C. Carboni, C. Morrison, J. Phys.: Condens. Mater. 20, 025218 (2008)

    Google Scholar 

  30. N.A. de Oliveira, P.J. von Ranke, Solid State Commun. 144, 103 (2007)

    Article  Google Scholar 

  31. J.L. Wang, C.C. Tang, G.H. Wu, Q.L. Liu, N. Tang, W.Q. Wang, W.H. Wang, F.M. Yang, J.K. Liang, F.R. de Boer, K.H.J. Buschow, Solid State Commun. 121, 615 (2002)

    Article  CAS  Google Scholar 

  32. J. Ćwik, N. Kolchugina, K. Nenkov, J. Alloys Compd. 560, 72 (2013)

    Article  Google Scholar 

  33. A. Kowalczyk, J. Baszyński, A. Szajek, J. Kováč, I. Škorvánek, J. Magn. Magn. Mater. 152, 279 (1996)

    Article  Google Scholar 

  34. B.P. Alho, P.H.O. Lopes, P.O. Ribeiro, T.S.T. Alvarenga, E.P. Nóbrega, V.S.R. de Sousa, A.M.G. Carvalho, A. Caldas, J.C.G. Tedesco, A.A. Coelho, N.A. de Oliveira, P.J. von Ranke, J. Magn. Magn. Mater. 449, 308 (2018)

    Article  CAS  Google Scholar 

  35. S.K. Banerjee, Phys. Lett. 12, 16 (1964)

    Article  Google Scholar 

  36. V.K. Pecharsky, K.A. Gschneidner, J. Appl. Phys. 86(1), 565 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Guangxi Natural Science Foundation (2019GXNSFAA245056, 2021GXNSFDA075009), the Innovation Project of Guangxi Graduate Education (YCSW2021190), the Guangxi Key Laboratory of Information Materials (201005-Z, 201014-Z, 211012-K), Guangxi One Thousand Young and Middle-Aged College and University Backbone Teachers Cultivation Program, and the Program for Bagui Scholars of Guangxi.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by WC, PD, ZL, and WZ. The first draft of the manuscript was written by WC and the manuscript was revised by LM and GR. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lei Ma or Guanghui Rao.

Ethics declarations

Conflict of interest

The authors have no conflict of relevant financial interest.

Research involving human and/or animal participants

This study does not involve human participants or animals and other moral violations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Ma, L., He, M. et al. High magnetic entropy change of Pr1−xDyxNi2 compounds with second-order magnetic phase transition. J Mater Sci: Mater Electron 33, 6555–6562 (2022). https://doi.org/10.1007/s10854-022-07830-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07830-9

Navigation