Skip to main content

Advertisement

Log in

Structure and mechanical properties of Zr/TiAlN films prepared by plasma-enhanced magnetron sputtering

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the effects of Zr interlayer on the structure and mechanical properties of TiAlN films, which were deposited on the M2 high-speed steel substrates by means of plasma-enhanced magnetron sputtering. The result shows that the crystal orientation of Zr/TiAlN films is similar to that of single-layered TiAlN films, but the difference is that AlN (111) of Zr/TiAlN films disappears completely. With respect to Zr interlayer, the texture coefficient of Zr/TiAlN films is approximately 1. Zr/TiAlN films exhibit a compact isometric structure, which is distinctly different from the columnar structure existing in the single-layered TiAlN films and Ti/TiAlN films. The hardness and H 3/E*2 of Zr/TiAlN films are, respectively, enhanced to be 36.6 GPa and 0.147. With a few cracks emerging around the indention, the adhesion strength of TiAlN films is obviously advanced by adding Zr metal interlayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Devia DM, Restrepo-Parra E, Arangoa PJ, Tschiptschin AP, Velez JM. TiAlN coatings deposited by triode magnetron sputtering varying the bias voltage. Appl Surf Sci. 2011;257(14):6181.

    Article  Google Scholar 

  2. Yang Q, Seo DY, Zhao LR, Zeng XT. Erosion resistance performance of magnetron sputtering deposited TiAlN coatings. Surf Coat Technol. 2004;188–189:168.

    Article  Google Scholar 

  3. Khrais Samir K, Lin YJ. Wear mechanisms and tool performance of TiAlN PVD coated inserts during machining of AISI 4140 steel. Wear. 2007;262(1–2):64.

    Article  Google Scholar 

  4. Liu AH, Deng JX, Cui HB, Chen YY, Zhao J. Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings. Int. J. Refract. Met. Hard Mater. 2012;31:82.

    Article  Google Scholar 

  5. Zou CW, Zhang J, Xie W, Shao LX, Guo LP, Fu DJ. Characterization and properties Ti–Al–Si–N nanocomposite coatings prepared by middle frequency magnetron sputtering. Appl Surf Sci. 2011;257(24):10373.

    Article  Google Scholar 

  6. Santana AE, Karimi A, Derflinger VH, Schutze A. Microstructure and mechanical behavior of TiAlCrN multilayer thin films. Surf Coat Technol. 2004;177–178:334.

    Article  Google Scholar 

  7. Zukerman I, Raveh A, Shneor Y, Shneck R, Klemberg-Saphieha JE, Martinu L. Internal stress in TiAlBN at high temperatures. Surf Coat Technol. 2007;201(13):6161.

    Article  Google Scholar 

  8. Tillmann W, Vogli E, Momeni S. Mechanical and tribological properties of Ti/TiAlN duplex coatings on high and low alloy tool steels. Vacuum. 2009;84(3):387.

    Article  Google Scholar 

  9. Vogli E, Tillmann W, Selvadurai-Lassl U, Fischer G, Herper J. Influence of Ti/TiAlN-multilayer designs on their residual stresses and mechanical properties. Appl Surf Sci. 2011;257(20):8550.

    Article  Google Scholar 

  10. Du H, Zhao HB, Xiong J, Xian G. Effect of interlayers on the structure and properties of TiAlN based coatings on WC-Co cemented carbide substrate. J Refract. Met. Hard Mater. 2012;37:60.

    Article  Google Scholar 

  11. Robinson Kevin S, Sherwood Peter MA. X-ray photoelectron spectroscopic studies of the surface of sputter ion plated films. Surf Interface Anal. 1984;6(6):261.

    Article  Google Scholar 

  12. Barshilia HC, Yogesh K, Rajam KS. Deposition of TiAlN coatings using reactive bipolar-pulsed direct current unbalanced magnetron sputtering. Vacuum. 2008;83(2):427.

    Article  Google Scholar 

  13. Vennemann A, Stock HR, Kohlscheen J, Rambadt S, Erkens G. Oxidation resistance of titanium–aluminium–silicon nitride coatings. Surf Coat Technol. 2003;174:408.

    Article  Google Scholar 

  14. Dong HB, Wu F, Alajmi Z, Zhang C, Fu T, Ge Y. Sol–gel derived Ta-containing TiO2 films on surface roughened NiTi alloy. Rare Met. 2014;33(1):21.

    Article  Google Scholar 

  15. Bertoti I, Mohai M, Sullivan JL, Saied SO. Surface characterisation of plasma-nitrided titanium: an XPS study. Appl Surf Sci. 1995;84(4):357.

    Article  Google Scholar 

  16. Bertoti I. Characterization of nitride coatings by XPS. Surf Coat Technol. 2002;151–152:194.

    Article  Google Scholar 

  17. Hellgren N, Johansson MP, Broitman E, Hultman L, Sundgren JE. Role of nitrogen in the formation of hard and elastic CN x thin films by reactive magnetron sputtering. Phys Rev B. 1999;59(7):5162.

    Article  Google Scholar 

  18. Saha NC, Tompkins HG. Titanium nitride oxidation chemistry: an X-ray photoelectron spectroscopy study. J Appl Phys. 1992;72(7):3072.

    Article  Google Scholar 

  19. Chan MH, Lu FH. X-ray photoelectron spectroscopy analyses of titanium oxynitride films prepared by magnetron sputtering using air/Ar mixtures. Thin Solid Films. 2009;517(17):5006.

    Article  Google Scholar 

  20. Zhou M, Makino Y, Nose M, Nogi K. Phase transition and properties of Ti–Al–N thin films prepared by r.f.-plasma assisted magnetron sputtering. Thin Solid Films. 1999;339(1–2):203.

    Article  Google Scholar 

  21. Man BY, Guzman L, Miotello A, Adami M. Microstructure, oxidation and H2-permeation resistance of TiAlN films deposited by DC magnetron sputtering technique. Surf Coat Technol. 2004;180–181:9.

    Article  Google Scholar 

  22. Valvoda V Jr, Kuzel R, Cerny R. Structure of TiN coatings deposited at relatively high rates and low temperatures by magnetron sputtering. Thin Solid Films. 1988;156(1):53.

    Article  Google Scholar 

  23. Cai HZ, Yi JH, Wei CL, Chen L, Wei Y, Hu CY. Effect of reactant gas flow rate on properties of tantalum layer fabricated by chemical vapor deposition. Chin J Rare Met. 2013;37(6):909.

    Google Scholar 

  24. Chawla V, Jayaganthan R, Chandra R. Structural characterizations of magnetron sputtered nanocrystalline TiN thin films. Mater Charact. 2008;59(8):1015.

    Article  Google Scholar 

  25. Leyland A, Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behavior. Wear. 2000;246(1–2):1.

    Article  Google Scholar 

  26. Li WZ, Evaristo M, Cavaleiro A. Influence of Al on the microstructure and mechanical properties of Cr–Zr–(Al–)N coatings with low and high Zr content. Surf Coat Technol. 2012;206(18):3764.

    Article  Google Scholar 

  27. Keunecke M, Stein C, Bewilogua K, Koelkerb W, Kasselc D, van den Berg H. Modified TiAlN coatings prepared by d.c. pulsed magnetron sputtering. Surf Coat Technol. 2010;205(2):1273.

    Article  Google Scholar 

  28. Rebouta L, Tavares CJ, Aimo R, Wang Z, Pischow K, Alves E, Rojas TC, Odriozola JA. Hard nanocomposite Ti–Si–N coatings prepared by DC reactive magnetron sputtering. Surf Coat Technol. 2000;133–134:234.

    Article  Google Scholar 

  29. Veprek S, Niederhofer A, Moto K, Bolom T, Männling HD, Nesladek P, Dollinger G, Bergmaier A. Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV = 80 to ≥105 GPa. Surf Coat Technol. 2000;133–134:152.

    Article  Google Scholar 

  30. Qi ZB, Sun P, Zhu FP, Wang ZC, Peng DL, Wu CH. The inverse Hall–Petch effect in nanocrystalline ZrN coatings. Surf Coat Technol. 2011;205(12):3692.

    Article  Google Scholar 

  31. Gerth J, Wiklund U. The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel. Wear. 2008;264(9–10):885.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Industry and Information Technology of China (No. 2012ZX04003011) and the National Natural Science Foundation of China (No. 51275323). The authors appreciate the Analysis and Testing Centre of Sichuan University for XPS, XRD, and SEM measurements. The authors are also grateful for the nano-indentation tests offered by University of Science and Technology Beijing and the Rockwell indentation test provided by Tool Researching Institute of Chengdu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Bo Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian, G., Zhao, HB., Fan, HY. et al. Structure and mechanical properties of Zr/TiAlN films prepared by plasma-enhanced magnetron sputtering. Rare Met. 34, 717–724 (2015). https://doi.org/10.1007/s12598-014-0300-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0300-9

Keywords

Navigation