Skip to main content
Log in

Fabrication and Characterization of TaxN Thin Films Deposited by DC Magnetron Sputtering Technique: Application in Microelectronic Devices

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

For long-term reliability, a microelectronic device needs the desired electrical behavior with high hardness, decent elasticity, fine adhesion on Si, and low interface stress. In the current research, tantalum nitride thin films were successfully deposited on Si and SiO2/Si substrates using DC reactive magnetron sputtering technique and studied as a microelectronic device. The phase and structure of the samples were tuned by the nitrogen/argon ratio ([N2/(N2 + Ar)]) and deposition power (75 and 150 W). Various structural, electrical, mechanical, and tribological characteristics of the samples were considered by X-ray diffraction technique, four-point probe instrument, indentation test, and scratch examination. The samples deposited at a nitrogen/argon ratio of 0.05 showed a Ta2N phase with hexagonal structure while those deposited at higher ratios (0.10, 0.15, and 0.20) represented a TaN phase with cubic structure. An increase in nitrogen content in the sample structure increased the resistivity values and destroyed the mechanical and tribological characteristics. The samples deposited at higher power (150 W) also showed more resistivity values and were more resistant to plastic deformation and wear than those deposited at lower power (75 W).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated and analyzed during the current study.

References

  1. A. Fattah-Alhosseini, F.R. Attarzadeh, S. Vafaeian, M. Haghshenas, M.K. Keshavarz, Int. J. Refract. Met. Hard Mater. 64, 168 (2017)

    Article  Google Scholar 

  2. A. Fattah-Alhosseini, M. Pourmahmoud, J. Mater. Eng. Perform. 27, 116 (2018)

    Article  Google Scholar 

  3. F.R. Attarzadeh, N. Attarzadeh, S. Vafaeian, A. Fattah-Alhosseini, J. Mater. Eng. Perform. 25, 4199 (2016)

    Article  Google Scholar 

  4. K. Babaei, A. Fattah-Alhosseini, H. Elmkhah, H. Ghomi, Surf. Interface 21, 100685 (2020)

    Article  Google Scholar 

  5. G. Abadias, C.H. Li, L. Belliard, Q.M. Hu, N. Greneche, P. Djemia, Acta Mater. 184, 254 (2020)

    Article  ADS  Google Scholar 

  6. Y.H. Yang, D.J. Chen, F.B. Wu, Surf. Coat. Technol. 303, 32 (2016)

    Article  Google Scholar 

  7. P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D.V. Bellas, C. Lekka, E. Lidorikis, Mater. Sci. Eng. R Reports. 123, 1 (2018)

    Article  Google Scholar 

  8. S.K. Kim, B.C. Cha, Thin Solid Films 475, 202 (2005)

    Article  ADS  Google Scholar 

  9. T. Riekkinen, J. Molarious, T. Laurila, A. Nurmela, I. Sumi, J.K. Kivilahti, Microelectron. Eng. 64, 289 (2002)

    Article  Google Scholar 

  10. C.S. Shin, Y.W. Kim, N. Hellgren, D. Gall, I. Petrov, J.E. Greene, J. Vac. Sci. Technol. A 20, 2007 (2002)

    Article  ADS  Google Scholar 

  11. D.K. Kim, H. Lee, D. Kim, Y.K. Kim, J. Cryst. Growth 283, 404 (2005)

  12. N.D. Cuong, D.J. Kim, B.D. Kang, C.S. Kim, K.M. Yu, S.G. Yoon, J. Electrochem. Soc. 153, G164 (2006)

    Article  Google Scholar 

  13. N.D. Cuong, D.J. Kim, B.D. Kang, C.S. Kim, K.M. Yu, S.G. Yoon, J. Vac. Sci. Technol. B 24, 1398 (2006)

    Article  Google Scholar 

  14. C.M. Wang, J.H. Hsieh, C. Li, Y. Fu, T.P. Chen, Surf. Coat. Technol. 193, 173 (2005)

    Article  Google Scholar 

  15. H. Shen, R. Ramanathan, Microelectron. Eng. 83, 206 (2006)

    Article  Google Scholar 

  16. S. Xu, P. Munroe, J. Xu, Z.H. Xie, Surf. Coat. Technol. 307, 470 (2016)

    Article  Google Scholar 

  17. G.R. Lee, H. Kim, H.S. Choi, J.J. Lee, Surf. Coat. Technol. 201, 5207 (2007)

    Article  Google Scholar 

  18. K. Khojier, H. Savaloni, S. Zolghadr, E. Amani, J. Mater. Eng. Perform. 23, 3444 (2014)

    Article  Google Scholar 

  19. K. Khojier, H. Savaloni, E. Shokrai, Z. Dehghani, N.Z. Dehnavi, J. Theor. Appl. Phys. 7, 37 (2013)

    Article  ADS  Google Scholar 

  20. N. Al-Hardan, M.J. Abdullah, A. Abdul Aziz, Appl. Surf. Sci. 255, 7794 (2009)

  21. K. Khojier, H. Savaloni, N. Habashi, M.H. Sadi, Mater. Sci. Semicond. Process. 41, 177 (2016)

    Article  Google Scholar 

  22. M.H. Tsai, S.C. Sun, C.E. Tsai, S.H. Chuang, H.T. Chiu, J. Appl. Phys. 79, 6932 (1996)

    Article  ADS  Google Scholar 

  23. B.E. Warren, X-ray diffraction (Addison Wesley Publishing Co., London, 1969)

    Google Scholar 

  24. H. Savaloni, K. Khojier, M.S. Alaee, J. Mater. Sc. 42, 2603 (2007)

    Article  ADS  Google Scholar 

  25. S. Goudarzi, K. Khojier, Appl. Phys. A 124, 601 (2018)

    Article  ADS  Google Scholar 

  26. F.H. Chung, D.K. Smith, Industrial applications of X-ray diffraction (Marcel Dekker Publisher, New York, 1999)

    Google Scholar 

  27. K. Khojier, H. Savaloni, Z. Ashkabusi, N.Z. Dehnavi, Appl. Surf. Sci. 284, 489 (2013)

    Article  ADS  Google Scholar 

  28. T.Z.H. Ting, M.E. Rahman, H.H. Lau, M.Z.Y. Ting, V. Pakrashi, Encycl. Renew. Sustain. Mater. 3, 137 (2020)

    Article  Google Scholar 

  29. N.R. Moody, R.Q. Hwang, S.V. Taraman, J.E. Angelo, D.P. Norwood, W.W. Gerberich, Acta Mater. 46, 585 (1998)

    Article  ADS  Google Scholar 

  30. K.H. Min, K.C. Chun, K.B. Kim, J. Vac. Sci. Technol. B 14, 3263 (1996)

    Article  Google Scholar 

  31. J.C. Weaver, Q.Q. Wang, A. Miserez, A. Tantuccio, R. Stromberg, K.N. Bozhilove, P. Maxwell, Richard Nay, S.T. Heier, E. DiMasi, D. Kisailusa, Mater. Today 13, 42 (2010)

  32. A. Leyland, A. Matthews, Surf. Coat. Technol. 177–178, 317 (2004)

    Article  Google Scholar 

  33. H. Zegtouf, N. Saoula, M. Azibi, L. Bait, N. Madaoui, M.R. Khelladi, M. Kechouane, Surf. Coat. Technol. 393, 125821 (2020)

    Article  Google Scholar 

  34. G. Shukla, A. Khare, Appl. Surf. Sci. 255, 2057 (2008)

    Article  ADS  Google Scholar 

  35. L. Eckertova, Physics of thin films (Springer, US, 1977)

    Book  Google Scholar 

  36. H. Savaloni, M.A. Player, Vac. 46, 167 (1995)

    Article  Google Scholar 

  37. P. Djemia, M. Benhamida, K. Bouamama, L. Belliard, D. Faurie, G. Abadias, Surf. Coat. Technol. 215, 199 (2013)

    Article  Google Scholar 

  38. H.B. Nie, S.Y. Xu, S.J. Wang, L.P. You, Z. Yang, C.K. Ong, J. Li, T.Y.F. Liew, Appl. Phys. A: Mater. Sci. Process. 73, 229 (2001)

    Article  ADS  Google Scholar 

  39. R. Westergard, M. Bromark, M. Larsson, P. Hedenqvist, S. Hogmark, Surf. Coat. Technol. 97, 779 (1997)

    Article  Google Scholar 

  40. T.G. Wang, D. Jeong, Y. Liu, Q. Wang, S. Iyengar, S. Melin, K.H. Kim, Surf. Coat. Technol. 206, 2638 (2012)

    Article  Google Scholar 

  41. S.V. Hainsworth, W.C. Soh, Surf. Coat. Technol. 163–164, 515 (2003)

    Article  Google Scholar 

  42. P. Patsalas, C. Charitidis, S. Logothetidis, Surf. Coat. Technol. 125, 335 (2000)

    Article  Google Scholar 

  43. H. Holleck, Material selection for hard coatings. J. Vac. Sci. Technol. A. 4, 2661 (1986)

    Article  ADS  Google Scholar 

  44. J. Musil, Surf. Coat. Technol. 207, 50–65 (2012)

    Article  Google Scholar 

  45. J. Musil, in: S. Zhang, N. Ali (Eds.), Nanocomposite films and coatings (London, Imperial College Press, London, 2007)

  46. W.D. Callister, D.G. Rethwisch, Materials Science and Engineering: An Introduction, 9th Edition (Wiley, 2013)

  47. D.R. Gaskell, Introduction to the Thermodynamics of Materials, 4th Edition (Taylor and Francis Publishing, 1995)

  48. W. González-Viñas, H.L. Mancini, An introduction to materials science (Princeton University Press, 2004)

  49. M. Ashby, S. Hugh, C. David, Materials: engineering, science, processing and design, 1st Edition (Butterworth-Heinemann, 2007)

Download references

Acknowledgements

This work was carried out with the support of the Islamic Azad University, Karaj and Chalous branches. The authors are also grateful to Dr. Morad Bagherzadeh Kasmani for partial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

M. Golami: part of the experimental process, software. K. Khojier: supervision, conceptualization, part of the experimental process, writing, editing. M. Monsefi: methodology, supervision, editing. S.M. Borghei: software, investigation.

Corresponding author

Correspondence to K. Khojier.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, M., Khojier, K., Monsefi, M. et al. Fabrication and Characterization of TaxN Thin Films Deposited by DC Magnetron Sputtering Technique: Application in Microelectronic Devices. Braz J Phys 52, 171 (2022). https://doi.org/10.1007/s13538-022-01164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01164-x

Keywords

Navigation