Skip to main content
Log in

Self action effects of q-Gaussian laser beam in preformed parabolic plasma channels: effect of nonlinear absorption

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This paper offers a theoretical examination of the self-action effects observed in intense laser beams as they propagate through preformed parabolic plasma channels. Specifically, detailed investigations have been conducted on the phenomena of self-focusing, self-trapping, and self-phase modulation of the laser beam. To visualize the impact of the beam profile deviating from the ideal Gaussian profile, the field distribution in the medium has been characterized by a q-Gaussian distribution. Applying the moment theory approach, the nonlinear partial differential equation governing the slowly varying envelope of the laser beam has been transformed into a set of interconnected ordinary differential equations describing the evolution of beam width and longitudinal phase. The obtained equations were numerically solved to visualize how both laser and medium parameters affect the propagation characteristics of the laser beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T.H. Maiman, Stimulated optical radiation in Ruby. Nature 187, 493 (1960)

    Article  ADS  Google Scholar 

  2. E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  3. A. Buck, M. Nicolai, K. Schmid, C.M.S. Sears, A. Sävert, J.M. Mikhailova, F. Krausz, M.C. Kaluza, L. Veisz, Real-time observation of laser-driven electron acceleration. Nat. Phys. 7, 543 (2011)

    Article  Google Scholar 

  4. N. Gupta, R. Johari, Laser-driven electron acceleration by q-Gaussian laser pulse in plasma: effect of self-focusing. J. Appl. Spectr. 90, 1133 (2023)

    Article  ADS  Google Scholar 

  5. M.H. Key, Laboratory production of X-ray lasers. Nature 316, 314 (1985)

    Article  ADS  Google Scholar 

  6. G. Chapline, L. Wood, X-ray lasers. Phys. Today 28, 40 (1975)

    Article  Google Scholar 

  7. M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, J. Woodworth, E.M. Campbell, M.D. Perry, R.J. Mason, Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626 (1994)

    Article  ADS  Google Scholar 

  8. M. Haines, Review of inertial confinement fusion. Astrophys. Space Sci. 256, 125 (1997)

    Article  ADS  Google Scholar 

  9. S.O. Dean, Creating compact, high power-density fusion plasmas. J. Fusion Energ. 8, 3 (1989)

    Article  ADS  Google Scholar 

  10. Q.J. Zhang, Z.M. Sheng, J. Zhang, Supercontinuum generation from intense laser-plasma interactions. Opt. Commun. 239, 437 (2004)

    Article  ADS  Google Scholar 

  11. N. Gupta, Effect of orbital angular momentum of light on self-action effects of Laguerre Gaussian laser beams in collisionless plasmas. J. Opt. 50, 466 (2021)

    Article  Google Scholar 

  12. N. Gupta, S.B. Bhardwaj, Relativistic effects on electron acceleration by elliptical q-Gaussian laser beam driven electron plasma wave. Opt. Quant. Electron. 53, 700 (2021)

    Article  Google Scholar 

  13. N. Gupta, S. Kumar, Generation of second harmonics of relativistically self-focused q-Gaussian laser beams in underdense plasma with axial density ramp. Opt. Quant. Electron. 53, 193 (2021)

    Article  Google Scholar 

  14. N. Gupta, Self focusing and axial phase modulation of laser beams carrying orbital angular momentum in collisionless plasmas. Opt. Quant. Electron. 53, 608 (2021)

    Article  Google Scholar 

  15. N. Gupta, S. Kumar, S.B. Bhardwaj, Excitation of electron plasma wave by self focused Cosh-Gaussian laser beams in collisionless plasmas: effect of density ramp. J. Appl. Spectr. 90, 160 (2023)

    Article  ADS  Google Scholar 

  16. N. Gupta, S. Kumar, Generation of second harmonics of self-focused quadruple-Gaussian laser beams in collisional plasmas with density ramp. J. Opt. 49, 455 (2020)

    Article  Google Scholar 

  17. N. Singh, N. Gupta, A. Singh, Second harmonic generation of Cosh-Gaussian laser beam in collisional plasma with nonlinear absorption. Opt. Commun. 381, 180 (2016)

    Article  ADS  Google Scholar 

  18. N. Gupta, N. Singh, A. Singh, Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption. Phys. Plasmas 22, 113106 (2015)

    Article  ADS  Google Scholar 

  19. L.G. Gouy, Sur une propriete nouvelle des ondes lumineuses, C. R. Acad. Sci. Paris Ser. IV 110, 1251 (1890)

    Google Scholar 

  20. R.W. Boyd, Intuitive explanation of the phase anomaly of focused light beams. J. Opt. Soc. Am. 70, 877 (1980)

    Article  ADS  Google Scholar 

  21. S. Feng, H.G. Winful, Physical origin of the Gouy phase shift. Opt. Lett. 26, 485 (2001)

    Article  ADS  Google Scholar 

  22. P. Hariharan, P.A. Robinson, The Gouy phase shift as a geometrical quantum effect. J. Mod. Opt. 43, 219 (1996)

    ADS  MathSciNet  Google Scholar 

  23. R.Y. Chiao, E. Garmire, C.H. Townes, Self-trapping of optical beams. Phys. Rev. Lett. 13, 479 (1964)

    Article  ADS  Google Scholar 

  24. P.L. Kelley, Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005 (1965)

    Article  ADS  Google Scholar 

  25. R.R. Alfano, S.L. Shapiro, Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592 (1970)

    Article  ADS  Google Scholar 

  26. T.K. Gustafson, J.P. Taran, H.A. Haus, J.R. Lifsitz, P.L. Kelley, Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments. Phys. Rev. 177, 306 (1969)

    Article  ADS  Google Scholar 

  27. M. Karlsson, Optical beams in saturable self-focusing media. Phys. Rev. A 46, 2726 (1992)

    Article  ADS  Google Scholar 

  28. J.T. Manassah, P.L. Baldeck, R.R. Alfano, Self-focusing and self-phase modulation in a parabolic graded-index optical fiber. Opt. Lett. 13, 589 (1988)

    Article  ADS  Google Scholar 

  29. M. Karlsson, D. Anderson, M. Desaix, Dynamics of self-focusing and self-phase modulation in a parabolic index optical fiber. Opt. Lett. 17, 22 (1992)

    Article  ADS  Google Scholar 

  30. M. Habibi, F. Ghamari, Investigation of non-stationary self-focusing of intense laser pulse in cold quantum plasma using ramp density profile. Phys. Plasmas 19, 113109 (2012)

    Article  ADS  Google Scholar 

  31. M. Habibi, F. Ghamari, Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile. Phys. Plasmas 19, 103110 (2012)

    Article  ADS  Google Scholar 

  32. D.N. Gupta, M.S. Hur, H. Suk, Additional focusing of a high-intensity laser beam in a plasma with a density ramp and a magnetic field. Appl. Phys. Lett. 91, 081505 (2007)

    Article  ADS  Google Scholar 

  33. P.K. Patel, M.H. Key, A.J. Mackinnon, R. Berry, M. Borghesi, D.M. Chambers, H. Chen, R. Clarke, C. Damian, R. Eagleton, R. Freeman, S. Glenzer, G. Gregori, R. Heathcote, D. Hey, N. Izumi, S. Kar, J. King, A. Nikroo, A. Niles, H.S. Park, J. Pasley, N. Patel, R. Shepherd, R.A. Snavely, D. Steinman, C. Stoeckl, M. Storm, W. Theobald, R. Town, R. Van Maren, S.C. Wilks, B. Zhang, Integrated laser-target interaction experiments on the RAL 47, B833 (2005)

  34. M. Nakatsutsumi, J.R. Davies, R. Kodama, J.S. Green, K.L. Lancaster, K.U. Akli, F.N. Beg, S.N. Chen, D. Clark, R.R. Freeman, C.D. Gregory, H. Habara, R. Heathcote, D.S. Hey, K. Highbarger, P. Jaanimagi, M.H. Key, K. Krushelnick, T. Ma, A. Mac Phee, A.J. Mac Kinnon, H. Nakamura, R.B. Stephens, M. Storm, M. Tampo, W. Theobald, L. Van Woerkom, R.L. Weber, M.S. Wei, N.C. Woolsey, P.A. Norreys, Space and time resolved measurements of the heating of solids to ten million Kelvin by a peta watt laser. New J. Phys. 10, 043046 (2008)

  35. J.F. Lam, B. Lippmann, F. Tappert, Moment theory of self-trapped laser beams with nonlinear saturation. Opt. Commun. 15, 419 (1975)

    Article  ADS  Google Scholar 

  36. J.F. Lam, B. Lippmann, F. Tappert, Self-trapped laser beams in plasma. Phys. Fluids 20, 1176 (1977)

    Article  ADS  Google Scholar 

  37. S.N. Vlasov, A.A. Petrischev, V.I. Talanov, Advanced description of wave beams in linear and nonlinear media (The method of moments). Sov. Radio Phys. Quant. Electron. 14, 1062 (1971)

    Article  ADS  Google Scholar 

  38. N. Erokhin, V.E. Zakharov, S.S. Moiseev, Second harmonic generation by an electromagnetic wave incident on inhomogeneous plasma. Sov. Phys. JETP 29, 101 (1969)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Alex, A.K., Partap, R. et al. Self action effects of q-Gaussian laser beam in preformed parabolic plasma channels: effect of nonlinear absorption. J Opt (2024). https://doi.org/10.1007/s12596-024-01769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01769-2

Keywords

Navigation