Skip to main content
Log in

Considerations about the determination of optical bandgap from diffuse reflectance spectroscopy using the tauc plot

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The optical diffuse reflectance data of a semiconductor material is usually converted into the Kubelka–Munk function before proceeding to process the conventional Tauc’s plot from which optical bandgap energy can be determined. Firstly, it is conventional/ customary to convert the percentage reflectance (\({R}_{\infty }\)(%)) data, which is obtained from UV-vis measurement into an equivalent reflectance (\({R}_{\infty }\)) that range between 0 and 1 before processing the Tauc’s plot. Secondly, the Kubelka–Munk function is usually multiplied by the incident photon energy, \(hv\), to produce an all-elements/ comprehensive Tauc’s plot. Literature is scarce to convincingly demonstrate that a correct bandgap value can, alternatively be obtained from the Tauc’s plot that is derived directly from the (\({R}_{\infty }\)(%) data without having to convert to \({R}_{\infty }\). Also, publication is rarely available to demonstrate that a proper bandgap value can be determined without having to multiply the Kubelka–Munk function by the term \(hv\). The present investigation shows diminutive differences in the bandgap values estimated from the \({R}_{\infty }\)(%)-based Tauc’s plots and the equivalent \({R}_{\infty }\)-based Tauc’s plots. This suggests that either of the methods can be employed for a precise bandgap estimate. A comparison between the magnitudes of the bandgap energies determined from the comprehensive Tauc’s plot and when the Kubelka–Munk function is not multiplied by \(hv\) reveals insignificant differences in the estimated values. This suggests that either of the two methods can be employed to obtain a reliable bandgap for direct and indirect optical gap semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B 252(8), 1–11 (2015)

    Article  Google Scholar 

  2. A.B. Murphy, Band-gap determination from DR measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol Energy Mater. Sol Cells. 91(14), 1–12 (2007)

    Article  Google Scholar 

  3. P.R. Jubu, O.S. Obaseki, A. Nathan-Abutu, F.K. Yam, Y. Yusof, M.B. Ochang, Dispensability of the conventional Tauc’s plot for accurate bandgap determination from UV-vis optical diffuse reflectance data. Res. Opt. 9, 1–7 (2022)

    Google Scholar 

  4. S. Landi, I.R. Segundo, C. Afonso, O. Lima, M.F.M. Costa, E. Freitas, J. Carneiro, Evaluation of band gap energy of TiO2 precipitated from titanium sulphate. Phys. B 639, 1–8 (2022)

    Article  Google Scholar 

  5. M.G. Brik, A.M. Srivastava, A.I. Popov, A few common misconceptions in the interpretation of experimental spectroscopic data. Opt. Mater. 127, 1–4 (2022)

    Article  Google Scholar 

  6. J.B. Coulter, D.P. Birnie, Assessing Tauc plot slope quantification: ZnO thin films as a model system. Phys. Status Solidi B 255(3), 1–7 (2017)

    Google Scholar 

  7. A.Z. Johannes, R.K. Pingak, M. Bukit, Tauc plot Software: calculating energy gap values of organic materials based on Ultraviolet-visible absorbance spectrum. IOP Conf. Series: Mater. Sci. Eng. 823, 1–5 (2020)

    Google Scholar 

  8. M.B. Ochang, I. Ahemen1, A.N. Amah, P.R. Jubu, A.D. Onoja, D.D. Hile, Y. Yusof, Influence of Mn content on the optical, structural and electrical properties of spray pyrolysis deposited quinternary Cu2Cd1 – xMnxSnS4 thin films for solar cells. Opt. Quant. Electron. 55, 1–33 (2023)

    Article  Google Scholar 

  9. P.R. Jubu, F.K. Yam, K.M. Chahrour, Structural and morphological properties of β-Ga2O3 nanostructures synthesized at various deposition temperatures. Phys. E. 123, 1–8 (2020)

    Article  Google Scholar 

  10. P.R. Jubu, K.M. Chahrour, F.K. Yam, O.M. Awoji, Y. Yusof, E.B. Choo, Titanium oxide nanotube film decorated with β-Ga2O3 nanoparticles for enhanced water splitting properties. Sol Energy. 235, 152–162 (2022)

    Article  ADS  CAS  Google Scholar 

  11. K.M. Chahrour, P.C. Ooi, A.A. Nazeer, L.A. Al-Hajji, P.R. Jubu, C.F. Dee, M. Ahmadipour, A. Azlan Hamzah, CuO/Cu/rGO nanocomposite anodic titania nanotubes for boosted non-enzymatic glucose biosensors. New. J. Chem. 47, 1–13 (2023)

    Article  Google Scholar 

  12. B.J. Akeredolu, I. Ahemen, A.N. Amah, A.D. Onojah, J. Shakya, H.N. Gayathri, A. Ghosh, Improved liquid phase exfoliation technique for the fabrication of MoS2/graphene heterostructure-based photodetector. Heliyon. 10, 1–17 (2024)

    Article  Google Scholar 

  13. P.R. Jubu, B. Yusuf, Y. Yusof, A.A. McAsule, S.I. Aondoakaa, N.J. Tsaviv, H.F. Chahul, M.S. Shiada, A.A. Gundu, M. Erukaa, Photocatalytic properties of molybdenum oxide photoelectrode synthesized by spray pyrolysis method. Opt. Quant. Electron. 55, 1–14 (2023)

    Article  Google Scholar 

  14. M.A. Abdul Razak, M.D. Johan Ooi, Y. Yusof, P.R. Jubu, Rapid synthesis of trimetallic alloy PtPdNi nanosponges: structural, morphology and catalytic performance. Dig. J. Nanomat Biostruct. 18(2), 451–461 (2023)

    Article  Google Scholar 

  15. M.A. Alkhalayfeh, A.A. Aziz, M.Z. Pakhuruddin, K.M.M. Katubi, N. Ahmadi, Recent development of indoor organic photovoltaics. Phys. Status Solidi A 219(5), 1–14 (2022)

    Article  Google Scholar 

  16. E. Danladi, P.R. Jubu, A.M. Tighezza, I. Hossain, N.N. Tasie, M.O. Abdulmalik, A.C. Egbugha, M.O. Awoji, M. Kashif, E.D. Onoja, M.I. Amanyi, Highly efficient, hole transport layer (HTL)free perovskite solar cell based on lithiumdoped electron transport layer by device simulation. Emerg. Mater. 6, 1779–1795 (2023)

    Article  CAS  Google Scholar 

  17. K.M. Katubi, N.S. Shiong, M.Z. Pakhuruddin, M.A. Alkhalafeh, S.A. Abubaker, M.R. Al-Soeidat, Over 35% efficiency of three absorber layers of perovskite solar cells using SCAPS 1-D. Optik. 297, 1–9 (2024)

    Article  Google Scholar 

  18. M.A. Alkhalayfeh, A.A. Aziz, M.Z. Pakhuruddin, K.M.M. Katubi, Plasmonic effects of Au@Ag nanoparticles in buffer and active layers of polymer solar cells for efficiency enhancement. Materials. 15, 1–9 (2022)

    Article  Google Scholar 

  19. M.A. Alkhalayfeh, A.A. Aziz, M.Z. Pakhuruddin, K.M.M. Katubi, Spiky durian-shaped Au@Ag nanoparticles in PEDOT:PSS for improved efficiency of organic solar cells. Materials. 14, 1–6 (2021)

    Article  Google Scholar 

  20. M.A. Alkhalayfeh, A.A. Aziz, M.Z. Pakhuruddin, K.M.M. Katubi, Recent advances of perovskite solar cells embedded with plasmonic nanoparticles. Phys. Status Solidi A 218(17), 1–15 (2021)

    Article  Google Scholar 

  21. R.J. Elliott, Intensity of optical absorption excitons. Phys. Rev. 108, 1384–1389 (1957)

    Article  ADS  CAS  Google Scholar 

  22. P.R. Jubu, F.K. Yam, V.M. Igba, K.P. Beh, Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data – a case study of β-Ga2O3. J. Solid State Chem. 290, 1–8 (2020)

    Article  Google Scholar 

  23. D.D. Hile, H.C. Swart, S.V. Motloung, T.E. Motaung, I. Ahemen, P.R. Jubu, K.E. Essien, L.F. Koao, Investigating the effects of varying sulfur concentration on ZnSxSe1–x (0 ≤ x ≤ 1.0) thin films prepared by photo-assisted chemical bath method. Res. Opt. 14, 1–7 (2024)

    Google Scholar 

  24. P.R. Jubu, E. Danladi, U.I. Ndeze, O. Adedokun, S. Jr. Landi, A.J. Haider, A.T. Adepoju, Y. Yusof, O.S. Obaseki, F.K. Yam, Comment about the use of unconventional tauc plots for bandgap energy determination of semiconductors using UV–Vis spectroscopy. Res. Opt. 14, 1–7 (2024)

    Google Scholar 

  25. T.M. Aper, F.K. Yam, B.K. Poay, P.R. Jubu, Morphological and structural transformations of indium oxide nanostructures in ammonia growth ambient by atmospheric chemical vapor deposition. Mater. Sci. Semicond. Proc. 118, 1–8 (2020)

  26. S. Landi, I.R. Segundo, E. Freitas, M. Vasilevskiy, J. Carneiro, C.J. Tavares, Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 341, 1–12 (2022)

    Article  Google Scholar 

  27. P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018)

    Article  PubMed  Google Scholar 

  28. A. Muhammad, Z. Hassan, S.M. Mohammad, S. Rajamanickam, Ibrahim Garba Shitu, Effect of trisodium citrate on morphological, structural, and optical properties of fluorine-doped ZnO structures. Ceram. Intl. 48, 13431–13439 (2022)

    Article  CAS  Google Scholar 

  29. B. Trujillo-Navarrete, F. Paraguay-Delgado, S. Pérez-Sicairos, Structure, microstructure and surface of Nd3+-doped mesoporous anatase-phase TiO2. Appl. Phys. A 126(8), 1–7 (2020)

    Article  Google Scholar 

  30. M. Pal, U. Pal, J.M. Jiménez, F. Pérez-Rodríguez, Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors. Nanoscale Res. Lett. 7(1), 1–9 (2012)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. H. Liu, Z. Wang, H. Li, X. Zhang, X. Qin, Y. Dai, B. Huang, Photocatalytic degradation of ethylene by Ga2O3 polymorphs. RSC Adv. 8(26), 14328–14334 (2018)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. T. Jeyakumaran, N.V. Bharathi, P. Sriramachandran, R. Shanmugavel, S. Ramaswamy, Synthesis and luminescence investigation of Eu3+ doped Ca2KZn2V3O12 phosphors: a potential material for WLEDs applications. J. Inorg. Organomet. Poly Mater. 31, 674–682 (2021)

    Article  CAS  Google Scholar 

  33. S. Nilavazhagan, D. Anbuselvan, A. Santhanam, N. Chidhambaram, Effect of an alkali hydroxide concentration on the structural, optical, and surface morphological properties of ZnO nanoparticles. App Phys. A 126(4), 1–10 (2020)

    Article  Google Scholar 

  34. E. Indubala, M. Dhanasekar, V. Sudha, E.J.P. Malar, P. Divya, J. Sherine, Harinipriya, l-Alanine capping of ZnO nanorods: increased career concentration in ZnO/CuI heterojunction diode. RSC Adv. 8(10), 5350–5361 (2018)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. A.J. Moreira, L.O. Campos, C.P. Maldi, J.A. Dias, E.C. Paris, T.R. Giraldi, G.P.G. Freschi, Photocatalytic degradation of Prozac® mediated by TiO2 nanoparticles obtained via three synthesis methods: sonochemical, microwave hydrothermal, and polymeric precursor. Env Sci. Poll. Res. 27, 27032–27047 (2020)

    Article  CAS  Google Scholar 

  36. K.M. Chahrour, F.K. Yam, A.M. Eid, Water-splitting properties of bi-phased TiO2 nanotube arrays subjected to high-temperature annealing. Ceram. Int. 46(13), 1–11 (2020)

    Article  Google Scholar 

  37. K.M. Chahrour, F.K. Yam, A.M. Eid, A.A. Nazeer, Enhanced photoelectrochemical properties of hierarchical black TiO2 – x nanolaces for cr (VI) photocatalytic reduction. Int. J. Hydrog Energy. 45(43), 22674–22690 (2020)

    Article  CAS  Google Scholar 

  38. L.H. Shankraiah, R. Mahadevaiah, U. Kogali, N. Govindappa, Capsicum annuum fruit extract: a novel reducing agent for the green synthesis of ZnO nanoparticles and their multifunctional applications. Acta Chim. Slov. 65(2), 1–12 (2018)

    Google Scholar 

  39. A. Escobedo-Morales, I.I. Ruiz-Lopez, M.L. Ruiz-Peralta, L. Tepech-Carrillo, M. Sanchez-Cantú, Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy. Heliyon. 5(4), 1505–1519 (2019)

    Article  Google Scholar 

  40. A. Dolgonos, T.O. Mason, K.R. Poeppelmeier, Direct optical band gap measurement in polycrystalline semiconductors: a critical look at the Tauc method. J. Solid State Chem. 240, 43–48 (2016)

    Article  ADS  CAS  Google Scholar 

  41. P.R. Jubu1, O.S. Obaseki, F.K. Yam, S.M. Stephen5, A.A. Avaa, A.A. McAsule, Y. Yusof, D.A. Oto, Influence of the secondary absorption and the vertical axis scale of the Tauc’s plot on optical bandgap energy. J. Opt. 52, 1426–1435 (2023)

    Article  Google Scholar 

  42. H. Zhong, F. Pan, S. Yuec, C. Qin, V. Hadjiev, F. Tian, X. Liu, F. Lin, Z. Wang, J. Bao, Idealizing Tauc plot for accurate bandgap determination of semiconductor with UV-Vis: a case study for cubic boron arsenide. J. Phys. Chem. Lett. 14, 6702–6708 (2023)

    Article  CAS  PubMed  Google Scholar 

  43. S.-M. Sun, W.-J. Liu, Y.-F. Xiao, Y.-W. Huan, H. Liu, S.-J. Ding, D.W. Zhang, Investigation of energy band at atomic layer-deposited ZnO/β-Ga2O3 (201) Heterojunctions. Nanoscale Res. Lett. 13, 1–6 (2018)

    Article  Google Scholar 

  44. S.R. Meitei, C. Ngangbam, N.K. Singh, Microstructural and optical properties of Ag assisted β-Ga2O3 nanowires on silicon substrate. Opt. Mater. 117, 1–5 (2021)

    Article  Google Scholar 

  45. P.R. Jubu, F.K. Yam, Career-Gas induced changes in the structural, stoichiometric and photocatalytic characteristics of gallium oxide nanostructures. J. Nanosci. Nanotechn. 21, 1–9 (2022)

    Google Scholar 

  46. S.-H. Baek, H.-J. Lee, S.-N. Lee, Thickness dependence of crystal and optical characterization on ZnO thin film grown by atomic layer deposition. AIP Adv. 8, 1–9 (2018)

    Article  Google Scholar 

  47. N.U. Mohd Nor, E. Mazalan, C. Risko, M. Crocker, N. Aishah, S. Amin, Unveiling the structural, electronic, and optical effects of carbon-doping on multi-layer anatase TiO2 (101) and the impact on photocatalysis. Appl. Surf. Sci. 586, 1–11 (2022)

    Google Scholar 

  48. R. Katal, S. Masudy-Panah, M. Tanhaei, M. Hossein Davood, A. Farahani, H. Jiangyong, A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis. Chem. Eng. J. 384, 1–7 (2019)

    Google Scholar 

  49. C. Meier, A. Gondorf, S. Lüttjohann, A. Lorke, H. Wiggers, Silicon nanoparticles: absorption, emission, and the nature of the electronic bandgap. J. Appl. Phys. 101(10), 1–12 (2007)

    Article  Google Scholar 

  50. M. Casalino, G. Coppola, R.M. De La Rue, D.F. Logan, State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser Photon Rev. 10(6), 895–921 (2016)

    Article  ADS  CAS  Google Scholar 

  51. H. Sugimoto, M. Fujii, K. Imakita, S. Hayashi, K. Akamatsu, Codoping n- and p-type impurities in colloidal silicon nanocrystals: controlling luminescence energy from below bulk band gap to visible range. J. Phys. Chem. C 117(22), 11850–11857 (2013)

    Article  CAS  Google Scholar 

  52. F.C. Jentoft, Ultraviolet–visible–near infrared spectroscopy in catalysis. Adv. Cata. 52, 129–211 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the Ministry of Higher Education Malaysia for the Fundamental Research Grant Scheme with Reference Code: (FRGS/1/2020/STG05/USM/02/4), and Universiti Sains Malaysia (USM) for the financial and technical support they provided for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peverga R. Jubu or F. K. Yam.

Ethics declarations

Competing interests

The authors declare that there are no financial or non-financial interests that are directly or indirectly related to this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jubu, P.R., Obaseki, O.S., Ajayi, D.I. et al. Considerations about the determination of optical bandgap from diffuse reflectance spectroscopy using the tauc plot. J Opt (2024). https://doi.org/10.1007/s12596-024-01741-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01741-0

Keywords

Navigation