Skip to main content
Log in

Structure, microstructure and surface of Nd3+-doped mesoporous anatase-phase TiO2

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We prepared nanocrystalline mesoporous anatase-phase TiO2 doped in the range from 0.0 to 1.0 at.% of Nd3+ by the reverse microemulsion method (RMM). The analysis of electron microscopy of the nanocrystal revealed a truncated-tetragonal bipyramidal shape and agglomerates of spheroidal nanoparticles with inter-particle porosity. The inductively coupled plasma (ICP) technique corroborated the doping concentrations. The analysis of structural parameters by the Rietveld refinement technique indicated the variation of Ti–O(1) and Ti–O(2) bond lengths, suggesting the Nd3+ insertion in the lattice. The microstructural analysis by the Williamson–Hall plot (WH) and whole powder pattern fitting (WPPF) revealed that the doping addition has a slight inhibition effect on the crystal size (6–8 nm) with a minor strain increment. The surface analysis from N2 adsorption/desorption isotherms showed that the incorporation of the dopant in low amounts improved the mesoporous structure stability, increased the diameter of opening pores, and changed the pore structure network. The XPS analysis of the chemical states on the surface suggests that the Nd3+ presence changed the Ti 2p region and the presence of the two chemical states of oxygen (OI and OII).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Zikriya, Y.F. Nadaf, C. Manjunath, C.G. Renuka, J. Mater. Sci. Mater. Electron. 29, 16824 (2018)

    Article  Google Scholar 

  2. X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  3. J. Zhao, P. Wan, J. Xiang, T. Tong, L. Dong, Z. Gao, X. Shen, H. Tong, Microporous Mesoporous Mater. 138, 200 (2011)

    Article  Google Scholar 

  4. G. Liu, H.G. Yang, J. Pan, Y.Q. Yang, G.Q. (Max) Lu, H.M. Cheng, Chem. Rev. 114, 9559 (2014)

    Article  Google Scholar 

  5. I. L. Vera Estrada, R. Narro-García, T. López-luke, V. H. Romero, J. A. Christen, E. De La Rosa Bull. Mater. Sci. 41 (2018).

  6. S. S. Muniandy, N. H. Mohd Kaus, Z.-T. Jiang, M. Altarawneh, H. L. Lee, RSC Adv. 7, 48083 (2017)

  7. Q. Ma, T.P. Qin, S.J. Liu, L.Q. Weng, W.Y. Dong, Appl. Phys. A 104, 365 (2011)

    Article  ADS  Google Scholar 

  8. Z. Wang, S. Dang, S. Zhao, L. Sun, J. Rare Earths 36, 939 (2018)

    Article  Google Scholar 

  9. H.A. Yurtsever, M. Çiftçioğlu, J. Alloys Compd. 695, 1336 (2017)

    Article  Google Scholar 

  10. Y. Zhang, H. Zhang, Y. Xu, Y. Wang, J. Solid State Chem. 177, 3490 (2004)

    Article  ADS  Google Scholar 

  11. S. Yuan, Q. Sheng, J. Zhang, F. Chen, M. Anpo, Q. Zhang, Microporous Mesoporous Mater. 79, 93 (2005)

    Article  Google Scholar 

  12. T.-D. Nguyen-Phan, M.B. Song, E.J. Kim, E.W. Shin, Microporous Mesoporous Mater. 119, 290 (2009)

    Article  Google Scholar 

  13. S. Wang, Z. Wang, Y. Wang, C. Xia, E. Hong, L. Bai, T. Li, B. Wang, Sci. Total Environ. 652, 85 (2019)

    Article  ADS  Google Scholar 

  14. M. Thommes, K.A. Cychosz, Adsorption 20, 233 (2014)

    Article  Google Scholar 

  15. X. Li, W. Zheng, G. He, R. Zhao, D. Liu, A.C.S. Sustain, Chem. Eng. 2, 288 (2014)

    Google Scholar 

  16. J. Rodríquez-Carvajal, T. Roisnel, Mater. Sci. Forum 443–444, 123 (2004)

    Article  Google Scholar 

  17. L.B. Mccusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, J. Appl. Crystallogr. 32, 36 (1999)

    Article  Google Scholar 

  18. K.S.W.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)

    Article  Google Scholar 

  19. K.S.W. Sing, R.T. Williams, Adsorpt. Sci. Technol. 22, 773 (2004)

    Article  Google Scholar 

  20. O. Terasaki, T. Ohsuna, Z. Liu, Y. Sakamoto, A. E. Garcia-Bennett, in Mesoporous Cryst. Relat. Nano-Structured Mater (2004), pp. 261–288.

  21. K. Mariselvam, R. Arun Kumar, P. Manasa, Infrared Phys. Technol. 91, 18 (2018)

    Google Scholar 

  22. Y.C. Lee, Y.S. Chang, L.G. Teoh, Y.L. Huang, Y.C. Shen, J. Sol-Gel Sci. Technol. 56, 33 (2010)

    Article  Google Scholar 

  23. C.J. Powell, J. Electron Spectros. Relat. Phenomena 185, 1 (2012)

    Article  Google Scholar 

  24. A.M. Bakhshayesh, N. Farajisafiloo, Appl. Phys. A 120, 199 (2015)

    Article  ADS  Google Scholar 

  25. J.F. Moulder, J. Chastain, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, 6tha edn. (Perkin-Elmer Corp, Eden Prairie, Minn, 1992)

    Google Scholar 

  26. D.D. Sarma, C.N.R. Rao, J. Electron Spectros. Relat. Phenomena 20, 25 (1980)

    Article  Google Scholar 

  27. W. Li, A.I. Frenkel, J.C. Woicik, C. Ni, S.I. Shah, Phys. Rev. B 72, 155315 (2005)

    Article  ADS  Google Scholar 

  28. H.C. Choi, Y.M. Jung, S. Bin Kim, Vib. Spectrosc. 37, 33 (2005)

    Article  Google Scholar 

  29. M. Grujić-Brojčin, M.J. Šćepanović, Z.D. Dohčević-Mitrovi, I. Hinić, B. Matović, G. Stanišić, Z.V. Popović, J. Phys. D. Appl. Phys. 38, 1415 (2005)

    Article  ADS  Google Scholar 

  30. B. Trujillo-Navarrete, M. del Pilar Haro-Vázquez, R.M. Félix-Navarro, F. Paraguay-Delgado, H. Alvarez-Huerta, S. Pérez-Sicairos, E.A. Reynoso-Soto, J. Rare Earths 35, 259 (2017)

    Article  Google Scholar 

  31. S.M. Gupta, M. Tripathi, Chin. Sci. Bull. 56, 1639 (2011)

    Article  Google Scholar 

  32. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011)

    Article  ADS  Google Scholar 

  33. K. Singh, S. Harish, A.P. Kristy, V. Shivani, J. Archana, M. Navaneethan, M. Shimomura, Y. Hayakawa, Appl. Surf. Sci. 449, 755 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Secretary of Public Education (SEP) and the Technological Nacional of Mexico (TecNM) supported this research [ITTIJ-PTC-009, PRODEP]. The authors wish to thank Tijuana Technological Institute for Scientific Research, Investigations Center of Advanced Materials (CIMAV), and Center of Nanoscience and Nanotechnology (CNyN-UNAM) for providing the facilities. Ernesto Lestargette is acknowledged for providing X-ray patterns, Carlos Ornelas for HRTEM images, David Dominguez for XPS survey, and Luis de la Torre-Saenz for N2 sorption isotherms. The authors wish to thank the engineering students: Jose Maria Hernandez, Henry Alvarez-Huerta, and Ricardo Xoxocotla for collection of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balter Trujillo-Navarrete.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4771 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trujillo-Navarrete, B., Paraguay-Delgado, F. & Pérez-Sicairos, S. Structure, microstructure and surface of Nd3+-doped mesoporous anatase-phase TiO2. Appl. Phys. A 126, 592 (2020). https://doi.org/10.1007/s00339-020-03768-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03768-z

Keywords

Navigation