Skip to main content
Log in

Analysing group indices and dispersion characteristics of engineered photonic crystal waveguides using artificial neural network

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Artificial neural networks in machine learning are popular in solving complex data problems. This article proposes a neural network for predicting the dispersion relations and group indices of a dispersion-engineered photonic crystal waveguide mainly designed for slow light applications. The model is trained by the data sets generated from MPB programming. A supervised feedforward multilayer perceptron neural network is used for predicting the data. Three hidden layers are used, with 500 nodes in each layer. One hundred epochs are used to achieve the lowest mean squared error. Waveguide structures with lattice shifts in the range of 0.00a–0.25a are used to generate the training data sets. After the training, it was found that the model could predict the dispersion and group indices values within the trained data range. The model is effective in reducing the computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

ML:

Machine learning

MLP:

Multilayer perceptron

MPB:

MIT photonic-bands

MSE:

Mean squared error

PBG:

Photonic bandgap

PC:

Photonic crystal

PCF:

Photonic crystal fibre

PCW:

Photonic crystal waveguide

References

  1. S. Arlot, A. Celisse, A survey of cross-validation procedures for model selection. Statist. Surv. 4, 40–79 (2010). https://doi.org/10.1214/09-SS054

    Article  MathSciNet  Google Scholar 

  2. T. Asano, S. Noda, Optimization of photonic crystal nanocavities based on deep learning. Opt. Express. 26, 32704 (2018). https://doi.org/10.1364/oe.26.032704

    Article  ADS  Google Scholar 

  3. T. Baba, Slow light in photonic crystals. Nat. Photonics. 2, 465–473 (2008). https://doi.org/10.1038/nphoton.2008.146

    Article  ADS  Google Scholar 

  4. S. Chugh, A. Gulistan, S. Ghosh, B.M.A. Rahman, Machine learning approach for computing optical properties of a photonic crystal fiber. Opt. Express. 27, 36414 (2019). https://doi.org/10.1364/oe.27.036414

    Article  ADS  Google Scholar 

  5. P. Colman, S. Combrié, G. Lehoucq, A. De Rossi, Control of dispersion in photonic crystal waveguides using group symmetry theory. Opt. Express 20, 13108–13114 (2012). https://doi.org/10.1364/oe.20.013108

    Article  ADS  Google Scholar 

  6. K. Dey, N. Vangety, S. Roy, Machine learning approach for simultaneous measurement of strain and temperature using FBG sensor. Sens. Actuator A Phys. 333, 1–6 (2022). https://doi.org/10.1016/j.sna.2021.113254

    Article  Google Scholar 

  7. Y. Hamachi, S. Kubo, T. Baba, Slow light with low dispersion and nonlinear enhancement in a lattice shifted photonic crystal waveguide. Opt. Lett. 34, 1072–1074 (2009). https://doi.org/10.1364/OL.34.001072

    Article  ADS  Google Scholar 

  8. R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, X. Zhang, Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Opt. Express. 18, 16309 (2010). https://doi.org/10.1364/oe.18.016309

    Article  ADS  Google Scholar 

  9. J.J. Hopfield, Artificial neural networks. IEEE Circuits Syst. Mag. 4, 3–10 (1988). https://doi.org/10.1109/101.8118

    Article  Google Scholar 

  10. Y. Khan, A. Samad, U. Iftikhar, S. Kumar, N. Ullah, J. Sultan, H. Ali, M.L. Haider, Mathematical modeling of photonic crystal based optical filters using machine learning. 2018 Int. Conf Comput. Electron. Electr. Eng. ICE Cube 2018, 1–5 (2019). https://doi.org/10.1109/ICECUBE.2018.8610986

    Article  Google Scholar 

  11. T.F. Krauss, Slow light in photonic crystal waveguides. J. Phys. D. Appl. Phys. 40, 2666–2670 (2007). https://doi.org/10.1088/0022-3727/40/9/S07

    Article  ADS  Google Scholar 

  12. Z.A. Kudyshev, A.V. Kildishev, V.M. Shalaev, A. Boltasseva, Machine learning-assisted global optimization of photonic devices. Nanophotonics. 10, 371–383 (2020). https://doi.org/10.1515/nanoph-2020-0376

    Article  ADS  Google Scholar 

  13. Z.A. Kudyshev, V.M. Shalaev, A. Boltasseva, Machine learning for integrated quantum photonics. ACS Photonics 8, 34–46 (2021). https://doi.org/10.1021/acsphotonics.0c00960

    Article  Google Scholar 

  14. J. Li, T.P. White, L. O’Faolain, A. Gomez-Iglesias, T.F. Krauss, Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express. 16, 6227 (2008). https://doi.org/10.1364/oe.16.006227

    Article  ADS  Google Scholar 

  15. S. Li, H. Lin, F. Meng, D. Moss, X. Huang, B. Jia, On-demand design of tunable complete photonic band gaps based on bloch mode analysis. Sci. Rep. 8, 1–8 (2018). https://doi.org/10.1038/s41598-018-32422-1

    Article  ADS  Google Scholar 

  16. K. Dey, V. Nikhil, P.R. Chaudhuri, S. Roy, Demonstration of a fast-training feed-forward machine learning algorithm for studying key optical properties of FBG and predicting precisely the output spectrum. Opt. Quantum Electron. 55, 16 (2023). https://doi.org/10.1007/s11082-022-04284-5

    Article  Google Scholar 

  17. W. Ma, Z. Liu, Z.A. Kudyshev, A. Boltasseva, W. Cai, Y. Liu, Deep learning for the design of photonic structures. Nat. Photonics. 15, 77–90 (2021). https://doi.org/10.1038/s41566-020-0685-y

    Article  ADS  Google Scholar 

  18. A. Venketeswaran et al., Recent advances in machine learning for fiber optic sensor applications. Adv. Intell. Syst. 4, 1–24 (2022). https://doi.org/10.1002/aisy.202100067

    Article  Google Scholar 

  19. L. Mescia, G. Fornarelli, D. Magarielli, F. Prudenzano, M. De Sario, F. Vacca, Refinement and design of rare earth doped photonic crystal fibre amplifier using an ANN approach. Opt. Laser Technol. 43, 1096–1103 (2011). https://doi.org/10.1016/j.optlastec.2011.02.005

    Article  ADS  Google Scholar 

  20. V.D.R. Pavan, S. Roy, Analyzing dispersion properties of photonic crystal waveguides with hole and ring like lattice by introducing systematic shift and twist. Opt. Quantum Electron. 53, 1–27 (2021). https://doi.org/10.1007/s11082-021-03333-9

    Article  Google Scholar 

  21. S. Roy, P.R. Chaudhuri, Analysis of nonlinear multilayered waveguides and MQW structures: a field evolution approach using finite-difference formulation. IEEE J. Quantum Electron. 45, 345–350 (2009). https://doi.org/10.1109/JQE.2009.2013084

    Article  ADS  Google Scholar 

  22. S. Roy, M. Santagiustina, P. Colman, S. Combrié, A. De Rossi, Modeling the dispersion of the nonlinearity in slow mode photonic crystal waveguides. IEEE Photonics J. 4, 224–233 (2012). https://doi.org/10.1109/JPHOT.2011.2181942

    Article  ADS  Google Scholar 

  23. S. Roy, A. Willinger, S. Combrié, A. De Rossi, G. Eisenstein, M. Santagiustina, Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides. Opt. Lett. 37, 2919–2921 (2012). https://doi.org/10.1364/OL.37.002919

    Article  ADS  Google Scholar 

  24. S. Roy, M. Santagiustina, A. Willinger, G. Eisenstein, S. Combrié, A. De Rossi, Parametric gain and conversion efficiency in nanophotonic waveguides with dispersive propagation coefficients and loss. J. Light. Technol. 32, 1177–1182 (2014). https://doi.org/10.1109/JLT.2014.2298913

    Article  ADS  Google Scholar 

  25. S.A. Schulz, L. O’Faolain, D.M. Beggs, T.P. White, A. Melloni, T.F. Krauss, Dispersion engineered slow light in photonic crystals: a comparison. J. Opt. 12, 104004 (2010). https://doi.org/10.1088/2040-8978/12/10/104004

    Article  ADS  Google Scholar 

  26. L. Shen, Z. Ye, S. He, S. He, Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm. Phys. Rev. B Condens. Matter Mater. Phys. 68, 1–5 (2003). https://doi.org/10.1103/PhysRevB.68.035109

    Article  Google Scholar 

  27. O. Sigmund, K. Hougaard, Geometric properties of optimal photonic crystals. Phys. Rev. Lett. (2008). https://doi.org/10.1103/PhysRevLett.100.153904

    Article  Google Scholar 

  28. A. Da Silva Ferreira, G.N. Malheiros-Silveira, H.E. Hernandez-Figueroa, Computing optical properties of photonic crystals by using multilayer perceptron and extreme learning machine. J. Light. Technol. 36, 4066–4073 (2018). https://doi.org/10.1109/JLT.2018.2856364

    Article  Google Scholar 

  29. B.K. Singh, P.C. Pandey, Tunable temperature-dependent THz photonic bandgaps and localization mode engineering in 1D periodic and quasi-periodic structures with graded-index materials and InSb. Appl. Opt. 57, 8171 (2018). https://doi.org/10.1364/ao.57.008171

    Article  ADS  Google Scholar 

  30. A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. De Rossi, G. Eisenstein, Narrowband optical parametric amplification measurements in Ga0.5In0.5P photonic crystal waveguides. Opt. Express 23, 17751 (2015). https://doi.org/10.1364/oe.23.017751

    Article  ADS  Google Scholar 

  31. B. Wu, K. Ding, C.T. Chan, Y. Chen, Machine prediction of topological transitions in photonic crystals. Phys. Rev. Appl. 14, 1 (2020). https://doi.org/10.1103/PhysRevApplied.14.044032

    Article  ADS  Google Scholar 

  32. V.D.R. Pavan, S. Roy, Exploring the slow light features of lattice shifted twist induced photonic crystal waveguides with ring like holes. IETE J. Res. (2022). https://doi.org/10.1080/03772063.2021.2016503

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the Department of Science and Technology, Government of India (DST-GoI) under the INSPIRE fellowship program with fellowship number IF160435. The authors sincerely acknowledge DST-GoI for the same.

Author information

Authors and Affiliations

Authors

Contributions

SR conceived the idea of an ML-based study of PCW. VDRP has performed the simulations, collected the raw data, and did the primary analysis in MPBVN, and KD developed the code to study PCW in MLBUS has tested the efficiency of the ANN model and performed the error analysis. Pavan has prepared the initial manuscript, and SR has analysed the results, drawn the conclusions and finalised the contents of the manuscript.

Corresponding author

Correspondence to Sourabh Roy.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavan, V.D.R., Nikhil, V., Dey, K. et al. Analysing group indices and dispersion characteristics of engineered photonic crystal waveguides using artificial neural network. J Opt 53, 1438–1446 (2024). https://doi.org/10.1007/s12596-023-01285-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01285-9

Keywords

Navigation