Skip to main content
Log in

Theoretical study of phase-controlled optical absorption, gain and group index in double-quantum-dot molecule

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Through solving the Schrodinger equations in the steady state, the optical absorption, gain and group index of a double-quantum-dot molecule (DQDM) system are investigated theoretically. It is demonstrated that the absorption, gain and group index of two different probe pulses are \(2\pi\)-period phase-dependent. The system optical properties can be engineered by modulating the Rabi frequencies and the field detuning of the two coupling lasers, and the field detuning of the two probe lasers. Particularly, we also can use the relative phase to control the optical properties for two different-frequency probe lasers. Such a system may be useful in designing new optoelectronic devices such as phase grating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Marcinkevičius, A. Gushterov, J.P. Reithmaier, Transient electromagnetically induced transparency in self-assembled quantum dots. Appl. Phys. Lett. 92(4), 041113 (2008)

    Article  ADS  Google Scholar 

  2. Z. Raki, H.R. Askari, Effect of light polarization and dimensions of Λ-type three level cylindrical quantum dot on electromagnetically induced transparency. Superlattices Microstruct. 65, 161–176 (2014)

    Article  ADS  Google Scholar 

  3. V. Azizi, B. Vaseghi, Electromagnetically induced transparency in a quantum pseudo-dot with spin–orbit interaction. Opt. Quant. Electron. 50(2), 1–12 (2018)

    Article  Google Scholar 

  4. A. Joshi, Phase-dependent electromagnetically induced transparency and its dispersion properties in a four-level quantum well system. Phys. Rev. B 79(11), 115315 (2009)

    Article  ADS  Google Scholar 

  5. S.M. Ma, H. Xu, B.S. Ham, Electromagnetically-induced transparency and slow light in GaAs/AlGaAs multiple quantum wells in a transient regime. Opt. Express 17(17), 14902–14908 (2009)

    Article  ADS  Google Scholar 

  6. E.C. Niculescu, Electromagnetically induced transparency in an asymmetric double quantum well under non-resonant, intense laser fields. Opt. Mater. 64, 540–547 (2017)

    Article  ADS  Google Scholar 

  7. S. Ding, C. Yu, X. Xiao et al., Phase tunable slow light in double quantum dot molecules. Optoelectron. Adv. Mater.-Rapid Commun. 15, 26–31 (2021)

    Google Scholar 

  8. B. Behroozian, H.R. Askari, M.R. Rezaie, Light group velocity in quantum dots under electromagnetically induced transparency by using second quantization formalism. Optik 226, 165907 (2021)

    Article  ADS  Google Scholar 

  9. H.S. Borges, L. Sanz, J.M. Villas-Bôas, O.D. Neto, A.M. Alcalde, Tunneling induced transparency and slow light in quantum dot molecules. Phys. Rev. B 85(11), 115425 (2012)

    Article  ADS  Google Scholar 

  10. Y. Peng, Y. Niu, Y. Qi et al., Optical precursors with tunneling-induced transparency in asymmetric quantum wells. Phys. Rev. A 83(1), 013812 (2011)

    Article  ADS  Google Scholar 

  11. X. Yang, Z. Li, Y. Wu, Four-wave mixing via electron spin coherence in a quantum well waveguide. Phys. Lett. A 340(1–4), 320–325 (2005)

    Article  ADS  MATH  Google Scholar 

  12. M. Matsuura, O. Raz, F. Gomez-Agis et al., 320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers. Opt. Lett. 36(15), 2910–2912 (2011)

    Article  ADS  Google Scholar 

  13. C. Yu, L. Sun, H. Zhang et al., High efficiency four-wave mixing in double asymmetry quantum dots. Optik 180, 295–301 (2019)

    Article  ADS  Google Scholar 

  14. J.B. Li, S. Xiao, S. Liang et al., Bistable four-wave mixing response in a semiconductor quantum dot coupled to a photonic crystal nanocavity. Opt. Express 25(21), 25663–25673 (2017)

    Article  ADS  Google Scholar 

  15. D.E. Nikonov, A. Imamoğlu, M.O. Scully, Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion. Phys. Rev. B 59(19), 12212 (1999)

    Article  ADS  Google Scholar 

  16. X. Xu, B. Sun, P.R. Berman et al., Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nat. Phys. 4(9), 692–695 (2008)

    Article  Google Scholar 

  17. J.F. Dynes, E. Paspalakis, Phase control of electron population, absorption, and dispersion properties of a semiconductor quantum well. Phys. Rev. B 73(23), 233305 (2006)

    Article  ADS  Google Scholar 

  18. S. Hughes, G.S. Agarwal, Anisotropy-induced quantum interference and population trapping between orthogonal quantum dot exciton states in semiconductor cavity systems. Phys. Rev. Lett. 118(6), 063601 (2017)

    Article  ADS  Google Scholar 

  19. J.H. Li, Controllable optical bistability in a four-subband semiconductor quantum well system. Phys. Rev. B 75(15), 155329 (2007)

    Article  ADS  Google Scholar 

  20. Z. Wang, B. Yu, Optical bistability via dual electromagnetically induced transparency in a coupled quantum-well nanostructure. J. Appl. Phys. 113(11), 113101 (2013)

    Article  ADS  Google Scholar 

  21. O. Qasaimeh, Contrast ratio and hysteresis width of optical bistability in quantum-dot vertical-cavity semiconductor optical amplifiers integrated with MEMS membrane. Opt. Quant. Electron. 49(3), 1–12 (2017)

    Article  Google Scholar 

  22. C. Yu, L. Sun, H. Zhang et al., Controllable optical bistability in double quantum dot molecule. IET Optoelectron. 12(4), 215–219 (2018)

    Article  Google Scholar 

  23. C. Yu, F. Chen, L. Sun et al., Controlling optical multistability and bistability in four-level cascade quantum wells. Optik 200, 163440 (2020)

    Article  ADS  Google Scholar 

  24. C. Yu, L. Sun, H. Zhang et al., Controllable optical bistability by tunneling effect and coupling laser field in quantum dot molecules. Optik 184, 128–133 (2019)

    Article  ADS  Google Scholar 

  25. C. Yu, L. Sun, H. Zhang et al., Optical bistability in quantum dot with four cascade energy levels. J. Optoelectron. Adv. Mater. 21(3–4), 194–200 (2019)

    Google Scholar 

  26. C. Yu, F. Chen, L. Sun et al., Controlling optical bistability in two-coupled quantum wells. Optoelectron. Adv. Mater.-rapid Commun. 13(3–4), 161–167 (2019)

    Google Scholar 

  27. S. Jasim, A.M. Chkheam, B. Al-Nashy et al., Kerr effect in ladder-plus-Y-configuration in double quantum dot structure. J. Korean Phys. Soc. 78(11), 1084–1088 (2021)

    Article  ADS  Google Scholar 

  28. Y. Peng, A. Yang, Y. Xu et al., Tunneling induced absorption with competing nonlinearities. Sci. Rep. 6(1), 1–8 (2016)

    Article  Google Scholar 

  29. E. Lhuillier, M. Scarafagio, P. Hease et al., Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz. Nano Lett. 16(2), 1282–1286 (2016)

    Article  ADS  Google Scholar 

  30. H.V. Phuc, L. Van Tung, P.T. Vinh et al., Nonlinear optical absorption via two-photon process in asymmetrical Gaussian potential quantum wells. Superlattices Microstruct. 77, 267–275 (2015)

    Article  ADS  Google Scholar 

  31. T. Kotani, M. Arita, Y. Arakawa, Doping dependent blue shift and linewidth broadening of intersubband absorption in non-polar m-plane AlGaN/GaN multiple quantum wells. Appl. Phys. Lett. 107(11), 112107 (2015)

    Article  ADS  Google Scholar 

  32. A. Vafafard, M. Sahrai, H.R. Hamedi et al., Tunneling induced two-dimensional phase grating in a quantum well nanostructure via third and fifth orders of susceptibility. Sci. Rep. 10(1), 1–10 (2020)

    Article  Google Scholar 

  33. Y. Hu, G. Cheng, A. Chen, Tunneling-induced phase grating in quantum dot molecules. Opt. Express 28(20), 29805–29814 (2020)

    Article  ADS  Google Scholar 

  34. S.C. Tian, H.Y. Lu, H. Zhang et al., Enhancing third-and fifth-order nonlinearity via tunneling in multiple quantum dots. Nanomaterials 9(3), 423 (2019)

    Article  Google Scholar 

  35. R. Sun, Y. Hu, G. Cheng et al., Gain-phase grating via double tunneling in quantum dot molecules. Laser Phys. Lett. 18(9), 095202 (2021)

    Article  ADS  Google Scholar 

  36. F.R. Al-Salihi, A.H. Al-Khursan, Electromagnetically induced grating in double quantum dot system. Opt. Quant. Electron. 52(3), 1–18 (2020)

    Article  Google Scholar 

  37. M. Abbas, S. Qamar, Spatially structured transparency and transfer of optical vortices via four-wave mixing in a quantum-dot nanostructure. Phys. Rev. A 101(2), 023821 (2020)

    Article  Google Scholar 

  38. M. Abdullah, F.T.M. Noori, A.H. Al-Khursan, Terahertz emission in ladder plus Y-configurations in double quantum dot structure. Appl. Opt. 54(16), 5186–5192 (2015)

    Article  ADS  Google Scholar 

  39. M. Bayer, A. Forchel, Temperature dependence of the exciton homogeneous linewidth in In 0.60 Ga 0.40 As/GaAs self-assembled quantum dots. Phys. Rev. B 65(4), 041308 (2002)

    Article  ADS  Google Scholar 

  40. Z. Wang, H. Fan, Phase-dependent optical bistability and multistability in a semiconductor quantum well system. J. Lumin. 130(11), 2084–2088 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11447182, 11447172 and 11547007), the Yangtze Fund for Youth Teams of Science and Technology Innovation (Grant No. 2015cqt03), and Innovation Training Program for College Students of Yangtze University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xun Xiao or Chunchao Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Wang, Y., Wang, W. et al. Theoretical study of phase-controlled optical absorption, gain and group index in double-quantum-dot molecule. J Opt 52, 1488–1493 (2023). https://doi.org/10.1007/s12596-022-00964-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00964-3

Keyword

Navigation