Skip to main content
Log in

Phase-Controlled Electromagnetically Induced Grating in a Quantum Dot Molocule

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We aim to explore the nature and features of Fraunhofer diffraction of a probe field travelling through a four-level quantum dot molecule (QDM) system which is driven by a standing wave and a coupling laser field. It is demonstrated that the degree of transparency, absorption, and gain can be conveniently manipulated by means of varying relative phase of the applied fields and tunneling parameter. Furthermore it is disclosed that as a result of changing the relative phase, system can function either as gain-phase grating or absorption-phase grating. On the other hand, we have examined the reaction of different orders of diffraction to the variation of both tunneling parameter and intensity of the coupling laser field. It is observed that the zeroth- and first order react sharply and the third-order approximately remains neutral. So that as a common result in both investigations, it is revealed that there are optimal conditions of relative phase for which system experiences a high-efficient gain-phase grating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ling, H.Y., Li, Y.Q., Xiao, M.: Electromagnetically induced grating: homogeneously broadened medium. Phys. Rev. A. 57, 1338–1344 (1998)

    ADS  Google Scholar 

  2. Mitsunaga, M.: Imoto, N: observation of an electromagnetically induced grating in cold sodium atoms. Phys. Rev. A. 59, 4773–4776 (1999)

    ADS  Google Scholar 

  3. Cardoso, G., Cardoso, C., Tabosa, J.W.R.: Electromagnetically induced gratings in a degenerate open two-level system. Phys. Rev. A. 65, 033803 (2002)

    ADS  Google Scholar 

  4. Yuan, J., Wu, C., Wang, L., Chen, G., Jia, S.: Observation of diffraction pattern in two-dimensional optically induced atomic lattice. Opt. Lett. 44, 4123–4126 (2019)

    ADS  Google Scholar 

  5. Brown, A.W., Xiao, M.: Frequency detuning and power dependence of reflection from an electromagnetically induced absorption grating. J. Mod. Opt. 52, 2365–2371 (2005)

    ADS  Google Scholar 

  6. Wen, J.M., Du, S.W., Chen, H.Y., Xiao, M.: Electromagnetically induced Talbot effect. Appl. Phys. Lett. 98, 081108 (2011)

    ADS  Google Scholar 

  7. Chen, H.X., Zhang, X., Zhu, D.Y., Yang, C., Jiang, T., Zheng, H.B., Zhang, Y.P.: Dressed four-wave mixing second-order Talbot effect. Phys. Rev. A. 90, 043846 (2014)

    ADS  Google Scholar 

  8. Moretti, D., Felinto, D., Tabosa, J.W.R., Lezama, A.: Dynamics of a stored Zeeman coherence grating in an external magnetic field. J. Phys. B. 43, 115502 (2010)

    ADS  Google Scholar 

  9. Zhang, Y.Q., Wu, Z.K., Belić, M.R., Zheng, H.B., Wang, Z.G., Xiao, M., Zhang, Y.P.: Photonic Floquet topological insulators in atomic ensembles. Laser Photon. Rev. 9, 331–338 (2015)

    ADS  Google Scholar 

  10. Brown, A.W., Xiao, M.: All-optical switching and routing based on an electromagnetically induced absorption grating. Opt. Lett. 30, 699–701 (2005)

    ADS  Google Scholar 

  11. Zhang, Y.P., Wang, Z.G., Nie, Z.Q., Li, C.B., Chen, H.X., Lu, K.Q., Xiao, M.: Four-wave mixing dipole soliton in laser-induced atomic gratings. Phys. Rev. Lett. 106, 093904 (2011)

    ADS  Google Scholar 

  12. Zhang, Y.P., Yuan, C.Z., Zhang, Y.Q., Zheng, H.B., Chen, H.X., Li, C.B., Wang, Z.G., Xiao, M.: Surface solitons of four-wave mixing in an electromagnetically induced lattice. Laser Phys. Lett. 10, 055406 (2013)

    ADS  Google Scholar 

  13. Dutta, B.K., Mahapatra, P.K.: Electromagnetically induced grating in a three-level Ξ-type system driven by a strong standing wave pump and weak probe fields. J. Phys. B. 39, 1145–1157 (2006)

    ADS  Google Scholar 

  14. Carvalho, S.A., De Araujo, L.E.: Electromagnetically induced blazed grating at low light levels. Phys. Rev. A. 83, 053825 (2011)

    ADS  Google Scholar 

  15. Wan, R.G., Kou, J., Jiang, L., Jiang, Y., Gao, J.Y.: Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence. Phys. Rev. A. 83, 033824 (2011)

    ADS  Google Scholar 

  16. Ba, N., Wu, X.Y., Liu, X.J., Zhang, S.Q., Wang, J.: Electromagnetically induced grating in an atomic system with a static magnetic field. Opt. Commun. 285, 3792–3797 (2012)

    ADS  Google Scholar 

  17. Xiao, Z.H., Zheng, L., Lin, H.: Photoinduced diffraction grating in hybrid artificial molecule. Opt. Express. 20, 1219–1229 (2012)

    ADS  Google Scholar 

  18. Kuang, S.Q., Yang, H.G.: Blazed gain grating in a four-level atomic system. J. Opt. Soc. Am. B. 30, 136–139 (2013)

    ADS  Google Scholar 

  19. Kuang, S.Q., Jin, C.S., Li, C.: Gain-phase grating based on spatial modulation of active Raman gain in cold atoms. Phys. Rev. A. 84, 033831 (2011)

    ADS  Google Scholar 

  20. Arkhipkin, V.G., Myslivets, S.A.: Raman-induced gratings in atomic media. Opt. Lett. 39, 3223–3226 (2014)

    ADS  Google Scholar 

  21. Naseri, T., Sadighi-Bonabi, R.: Efficient electromagnetically induced phase grating via quantum interference in a four-level N-type atomic system. J. Opt. Soc. Am. B. 31, 2430–2437 (2014)

    ADS  Google Scholar 

  22. Naseri, T., Sadighi-Bonabi, R.: Electromagnetically induced phase grating via population trapping condition in a microwave-driven four-level atomic system. J. Opt. Soc. Am. B. 31, 2879–2884 (2014)

    ADS  Google Scholar 

  23. Bonabi, R.S., Naseri, T., Toupchi, M.N.: Electromagnetically induced grating in the microwave driven four-level atomic systems. Appl. Opt. 54, 368–377 (2015)

    ADS  Google Scholar 

  24. Cheng, G.L., Cong, L., Chen, A.X.: Two-dimensional electromagnetically induced grating via gain and phase modulation in a two-level system. J. Phys. B. 49, 085501 (2016)

    ADS  Google Scholar 

  25. Liu, Y.-M., Tian, X.-D., Wang, X., Yan, D., Wu, J.-H.: Cooperative nonlinear grating sensitive to light intensity and photon correlation. Opt. Lett. 41, 408–411 (2016)

    ADS  Google Scholar 

  26. Arkhipkin, V.G., Myslivets, S.A.: Coherent manipulation of the Raman-induced gratings in atomic media. Phys. Rev. A. 93, 013810 (2016)

    ADS  Google Scholar 

  27. Cheng, G.L., Chen, A.X.: Squeezing induced high-efficiency diffraction grating in two-level system. Opt. Express. 25, 4483–4492 (2017)

    ADS  Google Scholar 

  28. Liu, Z.Z., Chen, Y., Yuan, J.Y., Wan, R.G.: Coherently induced grating in refractive index enhanced medium. Chin. Phys. B. 26, 124209 (2017)

    ADS  Google Scholar 

  29. Chen, Y.Y., Liu, Z.Z., Wan, R.G.: Beam splitter and router via an incoherent pump-assisted electromagnetically induced blazed grating. Appl. Opt. 56, 5736–5744 (2017)

    ADS  Google Scholar 

  30. Zhao, L.: Electromagnetically induced polarization grating. Sci. Rep. 8, 3073 (2018)

    ADS  Google Scholar 

  31. Asadpoura, S.H., Panahpour, A., Jafari, M.: Phase-dependent electromagnetically induced grating in a four-level quantum system near a plasmonic nanostructure. Eur. Phys. J. Plus. 133, 411 (2018)

    Google Scholar 

  32. Arkhipkin, V.G., Myslivets, S.A.: One- and two-dimensional Raman-induced diffraction gratings in atomic media. Phys. Rev. A. 98, 013838 (2018)

    ADS  Google Scholar 

  33. Asadpour, S.H., Jafari, M.: Plasmon-induced phase grating via nonlinear modulation. Opt. Commun. 421, 125–133 (2018)

    ADS  Google Scholar 

  34. Bozorgzadeh, F., Sahrai, M.: All-optical grating in a V + E configuration using a Rydberg state. Phys. Rev. A. 98, 043822 (2018)

    ADS  Google Scholar 

  35. Ranjbar, A.H., Mortezapour, A.: Electromagnetically induced gain-phase grating in a double V-type quantum system. J. Opt. Soc. Am. A. 36, 549–555 (2019)

    ADS  Google Scholar 

  36. Ma, D., Yu, D., Zhao, X.D., Qian, J.: Unidirectional and controllable higher-order diffraction by a Rydberg electromagnetically induced grating. Phys. Rev. A. 99, 033826 (2019)

    ADS  Google Scholar 

  37. Vafafard, A., Sahrai, M., Siahpoush, V., Hamedi, H.R., Asadpour, S.H.: Optically induced diffraction gratings based on periodic modulation of linear and nonlinear effects for atom-light coupling quantum systems near plasmonic nanostructures. Sci. Rep. 10, 16684 (2020)

    Google Scholar 

  38. Asadpour, S.H., Kirova, T., Qian, J., Hamedi, H.R., Juzeliūnas, G., Paspalakis, E.: Azimuthal modulation of electromagnetically induced grating using structured light. Sci. Rep. 10, 20721 (2021)

    Google Scholar 

  39. Zhou, F., Qi, Y., Sun, H., Chen, D., Yang, J., Niu, Y., Gong, S.: Electromagnetically induced grating in asymmetric quantum wells via Fano interference. Opt. Express. 21, 12249–12259 (2013)

    ADS  Google Scholar 

  40. Mortezapour, A., Ghaderi Goran Abad, M., Mahmoudi, M.: Magneto-optical rotation in a GaAs quantum well waveguide. J. Opt. Soc. Am. B. 32, 1338 (2015)

    ADS  Google Scholar 

  41. Naseri, T.: Investigation of dual electromagnetically induced grating based on spatial modulation in quantum well nanostructures via biexciton coherence. Laser Phys. 27, 045401 (2017)

    ADS  Google Scholar 

  42. Chen, A., Zhangb, L., Deng, L.: Controllable diffraction pattern in semiconductor quantum well based on quantum coherence. Ann. Phys. 396, 459–467 (2018)

    ADS  MathSciNet  Google Scholar 

  43. Bozorgzadeh, F., Sahrai, M.: Laser-induced diffraction grating in asymmetric double quantum well nanostructure. Laser Phys. Lett. 16, 036002 (2019)

    ADS  Google Scholar 

  44. Cheng, G.-L., Zhong, W.-X., Chen, A.-X.: Phonon induced phase grating in quantum dot system. Opt. Express. 23, 9870–9880 (2015)

    ADS  Google Scholar 

  45. Naseri, T.: Electromagnetically induced grating in semiconductor quantum dot and metal nanoparticle hybrid system by considering nonlocality effects. J. Theo. Appl. Phys. 14, 129–135 (2020)

    Google Scholar 

  46. Al-Salihi, F.R., Al-Khursan, A.H.: Electromagnetically induced grating in double quantum dot system. Opt. Quan. Elec. 52, 185 (2020)

    Google Scholar 

  47. Vafafard, A., Sahrai, M., Hamedi, H.R., Asadpour, S.H.: Tunneling induced two-dimensional phase grating in a quantum well nanostructure via third and fifth orders of susceptibility. Sci. Rep. 10, 7389 (2020)

    ADS  Google Scholar 

  48. Villasboas, J.M., Govorov, A.O., Ulloa, S.E.: Coherent control of tunneling in a quantum dot molecule. Phys. Rev. B. 69(12), 125342 (2004)

    ADS  Google Scholar 

  49. Muller, K., Bechtold, A., Ruppert, C., Zecherle, M., Reithmaier, G., Bichler, M., Krenner, H.J., Abstreiter, G., Holleitner, A.W., Villasboas, J.M., Betz, M., Finley, J.J.: Electrical control of interdot electron tunneling in a double ingaas quantum-dot nanostructure. Phys. Rev. Lett. 108(19), 197402 (2012)

    ADS  Google Scholar 

  50. Borges, H.S., Sanz, L., Villasboas, J.M., Neto, O.D., Alcalde, A.M.: Tunneling induced transparency and slow light in quantum dot molecules. Phys. Rev. B. 85(11), 115425 (2012)

    ADS  Google Scholar 

  51. Borges, H.S., Oliveira, M.H., Villasboas, C.J.: Influence of the asymmetric excited state decay on coherent population trapping. Sci. Rep. 7(1), 7132 (2017)

    ADS  Google Scholar 

  52. Vafafard, A., Goharshenasan, S., Nozari, N., Mortezapour, A., Mahmoudi, M.: Phase-dependent optical bistability in the quantum dot nanostructure molecules via inter-dot tunneling. J. Lumin. 134, 900–905 (2013)

    Google Scholar 

  53. Nasehi, R., Asadpour, S.H., Rahimpour, S.H., Mahmoudi, M.: Controlling the Goos–Hänchen Shift via incoherent pumping field and electron tunneling in the triple coupled InGaAs/GaAs quantum dots. Chin. Phys. Lett. 33, 014204 (2016)

    ADS  Google Scholar 

  54. Veisi, M., Hamideh, K.S., Mahmoudi, M.: Tunneling-induced optical limiting in quantum dot molecules. Sci. Rep. 10, 16304 (2020)

    Google Scholar 

  55. Li, Z., Cheng, Y., Wei, J., Zheng, X., Yan, Y.: Kondo-peak splitting and resonance enhancement caused by interdot tunneling in coupled double quantum dots. Phys. Rev. B. 98(11), 115133 (2018)

    ADS  Google Scholar 

  56. Mahdavi, M., Sabegh, Z.A., Mohammadi, M., Hamedi, H.R., Mahmoudi, M.: Manipulation and exchange of light with orbital angular momentum in quantum dot molecules. Phys. Rev. A. 101(6), 063811 (2020)

    ADS  Google Scholar 

  57. Hu, Y., Cheng, G., Chen, A.: Tunneling-induced phase grating in quantum dot molecules. Opt. Express. 28, 29805 (2020)

    ADS  Google Scholar 

  58. Cheng, G., Hu, Y., Zhong, W., Chen, A.: High-efficiency asymmetric diffraction based on PT-antisymmetry in quantum dot molecules. Chin. Phys. B. 31, 014202 (2021). https://doi.org/10.1088/1674-1056/ac0422

    Article  ADS  Google Scholar 

  59. Beirne, G.J., Hermannstädter, C., Wang, L., Rastelli, A., Schmidt, O.G., Michler, P.: Quantum light emission of two lateral tunnel-coupled (In,Ga)As/GaAs quantum dots controlled by a tunable static electric field. Phys. Rev. Lett. 96, 137401 (2006)

    ADS  Google Scholar 

  60. Beirne, G.J., Hermannstädter, C., Wang, L., Rastelli, A., Müller, E., Schmidt, O.G., Michler, P.: Tunable lateral tunnel coupling between two self-assembled InGaAs quantum dots. Proc. SPIE. 6471, 647104 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Momeni Feili.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feili, M.M., Mortezapour, A. & Naeimi, A.A. Phase-Controlled Electromagnetically Induced Grating in a Quantum Dot Molocule. Int J Theor Phys 61, 27 (2022). https://doi.org/10.1007/s10773-022-04978-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-04978-2

Keywords

Navigation