Skip to main content
Log in

Optical properties of MIM plasmonic waveguide with an elliptical cavity resonator

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Metal–insulator–metal waveguide structure, which has a fascinating feature to confine the signal far beyond the diffraction light is numerically investigated by the finite difference time domain and the finite element methods. In this study, the MIM waveguide is both coupled with a half-elliptical groove (HEG) and an elliptical cavity resonator (ECR), and it can support the propagation of light in the nanoscale regime at the visible and near-infrared ranges. The interaction between these last elements gives rise to Fano resonance modes. Thanks to its interesting characteristics, a high sensitivity value, a factor of merit and interesting value of the group index are obtained for the proposed structure. We show that the transmission of the Fano system and the group index can reach 90% and a value of 63, respectively. We also report an investigation of the influence of the both geometrical HEG and ECR’s parameters on optical properties. Hence, the proposed structure could find a potential for applications in the integrated optical circuits such as optical storage, ultrafast plasmonic switchers, high performance filters and slow light devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    Article  ADS  Google Scholar 

  2. U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    Article  ADS  Google Scholar 

  3. S. Liu, Z. Yang, R. Liu, X. Li, High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity. J. Phys. Chem. C 115(50), 24469–24477 (2011)

    Article  Google Scholar 

  4. J.R. Lombardi, R.L. Birke, A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 42(6), 734–742 (2009)

    Article  Google Scholar 

  5. W.S. Chang, J.B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N.J. Halas, S. Link, A plasmonic Fano switch. Nano Lett. 12(9), 4977–4982 (2012)

    Article  ADS  Google Scholar 

  6. N. Nordlander, J. Halas, S. Link, A plasmonic Fano switch. NanoLetter 12(9), 4977–4982 (2012)

    Article  ADS  Google Scholar 

  7. Y. Zhang, X. Zhang, Y. Wang, R. Zhu, Reversible Fano resonance by transition from fast light to slow light in a coupled resonator-induced transparency structure. Opt. Express 21(7), 8570 (2013)

    Article  ADS  Google Scholar 

  8. C. Wu, A.B. Khanikaev, G. Shvets, Broadband slow light metamaterial based on a double-continuum Fano resonance. Phys. Rev. Lett. 106(10), 107403 (2011)

    Article  ADS  Google Scholar 

  9. S. Zhan et al., Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide. Nature. (2016). https://doi.org/10.1038/srep22428

    Article  Google Scholar 

  10. F. Chen, Nanosensing and slow light application based on Fano resonance in waveguide coupled equilateral triangle resonator system. Optik 171, 58–64 (2018)

    Article  ADS  Google Scholar 

  11. X. Yi et al., Tunable Fano resonance in MDM stub waveguide coupled with a U-shaped cavity. Eur. Phys. J. D (2018). https://doi.org/10.1140/epjd/e2018-80734-6

    Article  Google Scholar 

  12. Y. Wang et al., Ultrasharp Fano resonances based on the circular cavity optimized by a metallic nanodisk. IEEE Photonics J 8, 4502608 (2016)

    Google Scholar 

  13. B. Yun et al., Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator. J. Opt. 18, 055002 (2016)

    Article  ADS  Google Scholar 

  14. P. Nagpal, N.C. Lindquist, S.-H. Oh, D.J. Norris, Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325(5940), 594–597 (2009)

    Article  ADS  Google Scholar 

  15. E.J.R. Vesseur, R. De Waele, H.J. Lezec, H.A. Atwater, F.J. Garcia de Abajo, A. Ploman, Surface plasmon polaritons modes in a single crystal Au nanoresonator fabricated using focused-ion-beam milling. Appl. Phys. Lett. 92, 083110-1–083110-3 (2008)

    Article  ADS  Google Scholar 

  16. Y. Cai, Y. Li, P. Nordlander, P.S. Cremer, Fabrication of elliptical nanorings with highly tunable and multiple plasmonic resonances. Nano Lett. 12, 4881–4888 (2012)

    Article  ADS  Google Scholar 

  17. M.A. Yurkin, Computational approaches for plasmonics, in Handbook of Molecular Plasmonics, ed. by F. Della Sala, S. D’Agostino (Pan Stanford Publishing, Singapore, 2013), pp. 83–135

    Chapter  Google Scholar 

  18. P. Panindre, S. Kumar, Effect of rounding corners on optical resonances in single-mode sharp-cornered microresonators. Opt. Lett. 41, 878–881 (2016)

    Article  ADS  Google Scholar 

  19. M. Tian, P. Lu, L. Chen, C. Lv, D.M. Liu, A subwavelength MIM waveguide resonator with an outer portion smooth bend structure. Opt. Commun. 284(16–17), 4078–4081 (2011)

    Article  ADS  Google Scholar 

  20. J. Shibayama, H. Kawai, J. Yamauchi, H. Nakano, O. Communications, J. Shibayama, H. Kawai, J. Yamauchi, H. Nakano, Analysis of a 3D MIM waveguide-based plasmonic demultiplexer using the TRC-FDTD method. Opt. Commun. 452, 360–365 (2019)

    Article  ADS  Google Scholar 

  21. Z. Han, S. He, Two-dimensional model for three-dimensional index-guided multimode plasmonic waveguides and the design of ultrasmall multimode interference splitters. Appl. Opt. 46(25), 6223–6227 (2007)

    Article  ADS  Google Scholar 

  22. X. Yang, E. Hua, M. Wang, Y. Wang, F. Wen, S. Yan, Fano resonance in a MIM waveguide with two triangle stubs coupled with a split-ring nanocavity for sensing application. Sensors 19(22), 4972 (2019)

    Article  Google Scholar 

  23. O. Mahboub, R. El Haffar, A. Farkhsi, Optical Fano resonance in MIM waveguides with a double splits ring resonator. Int. J. Microw. Opt. Technol. (IJMOT) 13, 181–187 (2018)

    Google Scholar 

  24. Z.H. Han, S.I. Bozhevolnyi, Plasmon-induced transparency with detuned ultracompact Fabry Perot resonators in integrated plasmonic devices. Opt. Express 19(4), 3251–3257 (2006)

    Article  ADS  Google Scholar 

  25. F.F. Hu, H.X. Yi, Z.P. Zhou, Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Opt. Express 19, 4848–4855 (2011)

    Article  ADS  Google Scholar 

  26. C. Min, G. Veronis, Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt. Express 17, 10757–10766 (2009)

    Article  ADS  Google Scholar 

  27. J. Parsons, C.P. Burrows, J.R. Sambles, W.L. Barnes, A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures. J. Mod. Opt. 57(5), 356–365 (2010)

    Article  ADS  Google Scholar 

  28. K.H. Wen, Y.H. Hu, L. Chen, J.Y. Zhou, L. Lei, Z. Guo, Fano resonance with ultra-high figure of merits based on plasmonic metal–insulator–metal waveguide. Plasmonics 10, 27–32 (2015)

    Article  Google Scholar 

  29. L. Hua, X. Liu, D. Mao, G. Wang, Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt. Lett. 37(18), 3780–3782 (2012)

    Article  ADS  Google Scholar 

  30. Z. Chen, L. Yu, L.L. Wang, G.Y. Duan, Y.F. Zhao, J.H. Xiao, A refractive index nanosensor based on Fano resonance in theplasmonic waveguide system. IEEE Photonics Technol. Lett. 27, 1695–1698 (2015)

    Article  ADS  Google Scholar 

  31. C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C.D. Wright, H. Bhaskaran, W.H.P. Pernice, Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 9(11), 725 (2015)

    Article  ADS  Google Scholar 

  32. Y. Huang, C.J. Min, G. Veronis, Subwavelength slow-light waveguide based on a plasmonic analogue of electromagnetically induced transparency. Appl. Phys. Lett. 99, 143117 (2011)

    Article  ADS  Google Scholar 

  33. A. Noual, M. Amrani, E. El Boudouti, Y. Pennec, B. Djafari-Rouhani, Terahertz plasmon-induced transparency and absorption in compact graphene-based coupled nanoribbons. Appl. Phys. A (2019). https://doi.org/10.1007/s00339-019-2474-3

    Article  Google Scholar 

  34. W. Boyd, Slow and fast light: fundamentals and applications. J. Mod. Opt. 56, 1908 (2009)

    Article  ADS  Google Scholar 

  35. T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, D. Mori, Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide. Opt. Express 16(12), 9245–9253 (2008)

    Article  ADS  Google Scholar 

  36. D.M. Beggs, T.P. White, L. O’Faolain, T.F. Krauss, Ultracompact and low-power optical switch based on silicon photonic crystals. Opt. Lett. 33(2), 147–149 (2008)

    Article  ADS  Google Scholar 

  37. C. Monat, B. Corcoran et al., Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides. Opt. Express 17(4), 2944–2953 (2009)

    Article  ADS  Google Scholar 

  38. H. Lu, X.M. Liu, D. Mao, Plasmonic analog of electromagnetically induced transparency in multinanoresonator-coupled waveguide systems. Phys. Rev. A 85, 053803 (2012)

    Article  ADS  Google Scholar 

  39. Q. Wang, H. Meng, B. Huang, H. Wang, X. Zhang, W. Yu, C. Tan, X. Huang, S. Li, Dual coupled-resonator system for plasmoninduced transparency and slow light effect. Opt. Commun. 380, 95–100 (2016)

    Article  ADS  Google Scholar 

  40. K. Totsuka, N. Kobayashi, M. Tomita, Slow light in coupled-resonator-induced transparency. Phys. Rev. Lett. 98, 213904–213904 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would especially like to thank Pr. Mustapha Figuigue and Pr. Youssef El Hafidi for the useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oussama Mahboub.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Haffar, R., Farkhsi, A. & Mahboub, O. Optical properties of MIM plasmonic waveguide with an elliptical cavity resonator. Appl. Phys. A 126, 486 (2020). https://doi.org/10.1007/s00339-020-03660-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03660-w

Keywords

Navigation