Skip to main content
Log in

Nonlinear interaction of quadruple Gaussian laser beams with narrow band gap semiconductors

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This paper presents an investigation on nonlinear propagation of quadruple Gaussian (Q.G) laser beam in narrowband semiconductor (e.g., n-type InSb) plasmas. In the presence of laser beam, the electron fluid in the conduction band becomes relativistic that makes the medium highly nonlinear. As a result the laser beam gets self-focused. Following variational theory approach in W.K.B approximation the numerical solution of the nonlinear Schrodinger wave equation (NSWE) for the field of incident laser beam has been obtained. Particular emphasis is put on dynamical variations of beam spot size and longitudinal phase (Gouy phase). Self-trapping of the laser beam resulting from the dynamical balance between diffraction broadening and nonlinear refraction also has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T.H. Maiman, Stimulated optical radiation in Ruby. Nat. 187, 493 (1960)

    Article  ADS  Google Scholar 

  2. S. Jacquemot, Inertial confinement fusion for energy: overview of the ongoing experimental, theoretical and numerical studies. Nucl. Fus. 57, 102024 (2017)

    Article  ADS  Google Scholar 

  3. E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  4. D.N. Gupta, H. Suk, Enhanced focusing of laser beams in semiconductor plasmas. J. Appl. Phys. 101, 043109 (2007)

    Article  ADS  Google Scholar 

  5. N. Rani, M. Yadav, Y.K. Mathur, The nonlinear wave in semiconductor quantum plasma for laser beam in a self-consistent plasma channel. Phys. Lett. A 384, 126188 (2020)

    Article  Google Scholar 

  6. G.A. Askaryan, Effects of the gradient of strong electromagnetic beam on electrons and atoms. Soviet Phys. JETP 15, 1088 (1962)

    Google Scholar 

  7. L. G. Gouy, Sur une propriete nouvelle des ondes lumineuses. C. R. Acad. Sci. Paris Ser. IV 110, 1251 (1890)

  8. R.W. Boyd, Intuitive explanation of the phase anomaly of focused light beams. J. Opt. Soc. Am. 70, 877 (1980)

    Article  ADS  Google Scholar 

  9. S. Feng, H.G. Winful, Physical origin of the Gouy phase shift. Opt. Lett. 26, 485 (2001)

    Article  ADS  Google Scholar 

  10. P. Hariharan, P.A. Robinson, The gouy phase shift as a geometrical quantum effect. J. Mod. Opt. 43, 219 (1996)

    MathSciNet  MATH  ADS  Google Scholar 

  11. R.Y. Chiao, E. Garmire, C.H. Townes, Self-trapping of optical beams. Phys. Rev. Lett. 13, 479 (1965)

    Article  ADS  Google Scholar 

  12. P.L. Kelley, Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005 (1965)

    Article  ADS  Google Scholar 

  13. M. Karlsson, Optical beams in saturable self-focusing media. Phys. Rev. A 46, 2726 (1992)

    Article  ADS  Google Scholar 

  14. J.T. Manassah, P.L. Baldeck, R.R. Alfano, Self-focusing and self-phase modulation in a parabolic graded-index optical fiber. Opt. Lett. 13, 589 (1988)

    Article  ADS  Google Scholar 

  15. M. Karlsson, D. Anderson, M. Desaix, M. Lisak, Dynamic effects of Kerr nonlinearity and spatial diffraction on self-phase modulation of optical pulses. Opt. Lett. 16, 1373 (1991)

    Article  ADS  Google Scholar 

  16. P.K. Dubey, V.V. Paranjape, Self-Action of Laser Beams in Semiconductors. Phys. Rev. B 8, 1514 (1973)

    Article  ADS  Google Scholar 

  17. N. Gupta, S. Kumar, Generation of second harmonics of q-Gaussian laser beams in collisional plasma with upward density ramp. Laser Phys. 30, 066003 (2020)

    Article  ADS  Google Scholar 

  18. N. Gupta, Second harmonic generation of q-Gaussian laser beam in plasma channel created by ignitor heater technique. Laser Part. Beams 37, 184 (2019)

    Article  ADS  Google Scholar 

  19. T.S. Gill, R. Kaur, R. Mahajan, Self-focusing of super-Gaussian laser beam inmagnetized plasma under relativistic and ponderomotive regime. Optik 18, 1683 (2015)

    Article  ADS  Google Scholar 

  20. A. Singh, N. Gupta, Second harmonic generation of self-focused Cosh-Gaussian laser beam in collisional plasma. Optik 127, 5452 (2016)

    Article  ADS  Google Scholar 

  21. N. Gupta, S. Kumar, Self-action effects of quadruple-Gaussian laser beams in collisional plasmas and their resemblance to Keplers central force problem. Pramana-J. Phys. 95, 53 (2021)

    Article  ADS  Google Scholar 

  22. N. Gupta, A. Singh, Dynamics of quadruple laser beams in collisionless plasmas. W. Random comp. Med. 29, 1 (2017)

    ADS  Google Scholar 

  23. P. Sati, A. Sharma, V.K. Tripathi, Self focusing of a quadruple Gaussian laser beam in a plasma. Phys. of Plasmas 19, 092117 (2012)

    Article  ADS  Google Scholar 

  24. J.F. Lam, B. Lippmann, F. Tappert, Self-trapped laser beams in plasma. Phys. Fluids 20, 1176 (1977)

    Article  ADS  Google Scholar 

  25. N. Gupta, S. Kumar, Linear and nonlinear propagation characteristics of multi-Gaussian laser beams. Ch. Phys. B 29, 114210 (2020)

    Article  ADS  Google Scholar 

  26. N. Gupta, S. Kumar, Self-focusing of multi-Gaussian laser beams in nonlinear optical media as a Keplers central force problem. Opt. Quant. Electron. 52, 178 (2020)

    Article  Google Scholar 

  27. D. Anderson, M. Bonnedal, M. Lisak, Nonlinear propagation of elliptically shaped Gaussian laser beams. J. Plasma Phys. 23, 115 (1980)

    Article  ADS  Google Scholar 

  28. D. Anderson, M. Bonnedal, Variational approach to nonlinear self-focusing of Gaussian laser beams. Phys. Fluids 22, 105 (1979)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Kumar, S., A, G. et al. Nonlinear interaction of quadruple Gaussian laser beams with narrow band gap semiconductors. J Opt 51, 269–282 (2022). https://doi.org/10.1007/s12596-021-00776-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-021-00776-x

Navigation