Skip to main content
Log in

Fiber dispersion compensation in single side band optical communication system using ideal fiber Bragg grating and chirped fiber Bragg grating without DCF

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this paper, a 10 Gbps, single side band optical communication system is implemented with different dispersion compensation schemes. This paper proposes that dispersion compensation is fruitful with a linear chirped fiber Bragg grating, without a dispersion compensation fiber at higher input powers. Its performance is compared with fiber Bragg grating and DCF. Same global parameters are used for all simulations. The simulated transmission system has been analyzed by different performance parameters like Q factor, output RF power and eye diagram extinction ratio. The Q factor, output RF power and extinction ratio can be improved about by 21 dB, 3.5 dB, and 20 dB respectively. The simulations are conducted for higher input power from 0 dBm to 8 dBm and for fiber length from 20 km to 80 km. The BER in CFBG is 15 dB lesser than FBG. The CFBG shows better performance than conventional FBG. The signal delay is also the lowest in the method using CFBG. The Q factor and signal delay are also compared with CFBG, FBG, DCF and uncompensated system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rick et al., Long-haul analog photonics. J. Lightwave Technol. 29(8), 1182–1205 (2011)

    Article  ADS  Google Scholar 

  2. J. Seeds, K.J. Willims, Microwave photonics. J. Lightwave Technol. 24(12), 4628–4641 (2006)

    Article  ADS  Google Scholar 

  3. M.A. Othman, M.M. Ismail, H.A. Sulaiman, M.H. Misran, M.A. Meor Said, Y.A. Rahim, A.N. Che Pee, M.R. Motsidi, An Analysis of 10 Gbits/s optical transmission system using fiber bragg grating (FBG), IOSR. J. Eng. 2(7), 55–61 (2012)

    Google Scholar 

  4. M. Vengsarkar, W.A. Reed, Dispersion compensating single-mode fibers: efficient designs for first and second-order compensation. Opt. Lett. 18, 924–926 (1993)

    Article  ADS  Google Scholar 

  5. L.G. Nielsen, S.N. Knudsen, Dispersion compensating fibers. Opt. Fiber Technol. 6, 164–180 (2000)

    Article  ADS  Google Scholar 

  6. G.P. Agrawal, Optical Fiber Communications Systems (Wiley, New York, 1997)

    Google Scholar 

  7. F. Qullette, Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. Opt. Lett. 12, 847–849 (1987)

    Article  ADS  Google Scholar 

  8. J.A.R. Williams, I. Bennion, K. Sugden, N.J. Doran, Fiber dispersion compensation using a chirped in fiber Bragg grating. Electron. Lett. 30, 985–987 (1994)

    Article  Google Scholar 

  9. S.O. Mohammadi, S. Mozaffari, M.M. Shahidi, Simulation of a transmission system to compensate dispersion in an optical fiber by chirp gratings. Int. J. Phys. Sci. 6(32), 7354–7360 (2011)

    Google Scholar 

  10. C. Scheerer et al, Influence of filter group delay ripples on system performance, in ECOC (1999), pp. I-4101

  11. Z. Pan et al., Tunable chromatic dispersion compensation in 40-Gb/s systems using nonlinearly chirped fiber Bragg gratings. J. Lightwave Technol. 20(12), 2239–2246 (2002)

    Article  ADS  Google Scholar 

  12. M. Tomizawa et al., Automatic dispersion equalization for installing high-speed optical transmission systems. J. Lightwave Technol. 16(2), 184–191 (1998)

    Article  ADS  Google Scholar 

  13. J. Park, W.V. Sorin, K.Y. Lau, Elimination of the fibre chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission. Electron. Lett. 33(6), 512–513 (1997)

    Article  Google Scholar 

  14. J. Yu et al., A novel scheme to generate single-sideband millimeterwave signals by using low-frequency local oscillator signal. IEEE Photonic Technol. Lett. 20(7), 478–480 (2008)

    Article  ADS  Google Scholar 

  15. Z. Tang, S. Pan, J. Yao, A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical singlesideband modulator. Opt. Express 20(6), 6555–6560 (2012)

    Article  ADS  Google Scholar 

  16. G.H. Smith, D. Novak, Z. Ahmed, Overcoming chromatic dispersion effects in fiber-wireless systems incorporating external modulators. IEEE Trans. Microwave Theory Tech. 45(8), 1410–1415 (1997)

    Article  ADS  Google Scholar 

  17. Y. Ogiso et al., High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation. IEEE Photonic Technol. Lett. 22(12), 941–943 (2010)

    Article  ADS  Google Scholar 

  18. Z. Li et al., Optical single-sideband modulation using a fiber-Bragggrating-based optical Hilbert transformer. IEEE Photonic Technol. Lett. 23(9), 558–560 (2011)

    Article  ADS  Google Scholar 

  19. Y. Shen, X. Zhang, K. Chen, Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering. IEEE Photonic Technol. Lett. 17(6), 1277–1279 (2005)

    Article  ADS  Google Scholar 

  20. H.K. Sung, E.K. Lau, M.C. Wu, Optical single sideband modulation using strong optical injection-locked semiconductor lasers. IEEE Photonic Technol. Lett. 19(13), 1005–1007 (2007)

    Article  ADS  Google Scholar 

  21. Hong et al., Single-sideband modulation based on an injection locked DFB lasers in radio-over-fiber systems. IEEE Photonic Technol. Lett. 22(7), 462–464 (2010)

    Article  ADS  Google Scholar 

  22. J.C. Cartledge, R.G. McKay, Performance of 10 Gb/s lightwave systems using an adjustable chirp optical modulator and linear equalization. IEEE Photonics Technol. Lett. 4, 1394–1397 (1992)

    Article  ADS  Google Scholar 

  23. T. Erdogan et al., Fibre grating spectra. J. Lightwave Technol. 15(8), 1277–1294 (1997)

    Article  ADS  Google Scholar 

  24. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Inc., Norwood, 1999)

    Google Scholar 

  25. K.O. Hill, G. Meltz, Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 15, 1263–1276 (1997)

    Article  ADS  Google Scholar 

  26. O. Mohammadi, S. Mozaffari, M.M. Shahidi, Simulation of a transmission system to compensate dispersion in an optical fiber by chirp gratings. Int. J. Phys. Sci. 6(32), 7354–7360 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Asha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asha, R.S., Jayasree, V.K. & Mhatli, S. Fiber dispersion compensation in single side band optical communication system using ideal fiber Bragg grating and chirped fiber Bragg grating without DCF. J Opt 47, 148–153 (2018). https://doi.org/10.1007/s12596-018-0447-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-018-0447-0

Keywords

Navigation