Skip to main content

Advertisement

Log in

Lead, Arsenic, and Manganese Metal Mixture Exposures: Focus on Biomarkers of Effect

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The increasing exposure of human populations to excessive levels of metals continues to represent a matter of public health concern. Several biomarkers have been studied and proposed for the detection of adverse health effects induced by lead (Pb), arsenic (As), and manganese (Mn); however, these studies have relied on exposures to each single metal, which fails to replicate real-life exposure scenarios. These three metals are commonly detected in different environmental, occupational, and food contexts and they share common neurotoxic effects, which are progressive and once clinically apparent may be irreversible. Thus, chronic exposure to low levels of a mixture of these metals may represent an additive risk of toxicity. Building upon their shared mechanisms of toxicity, such as oxidative stress, interference with neurotransmitters, and effects on the hematopoietic system, we address putative biomarkers, which may assist in assessing the onset of neurological diseases associated with exposure to this metal mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agency for Toxic Substances and Disease Registry (ASTDR), U.S. Department of Health and Human Sciences (2004) Issue paper on the human health effects of metals

  2. Martinez-Finley EJ, Chakraborty S, Fretham SJB, Aschner M (2012) Cellular transport and homeostasis of essential and nonessential metals. Metallomics 4(7):593–605

    CAS  PubMed  Google Scholar 

  3. Wong CSC, Li X, Thornton I (2006) Urban environmental geochemistry of trace metals. Environ Pollut 142:1–16

    CAS  PubMed  Google Scholar 

  4. Fairbrother A, Wenste R, Sappington K, Wood W (2007) Framework for metals risk assessment. Ecotoxicol Environ Safety 68:145–227

    CAS  PubMed  Google Scholar 

  5. Agency for Toxic Substances and Disease Registry (ASTDR), U.S. Department of Health and Human Sciences (2000) Supplementary guidance for conducting health risk assessment of chemical mixtures

  6. Kortenkamp and Faust (2009) State of the Art Report on Mixture Toxicity—Final Report. UE Commission. http://ec.europa.eu/environment/chemicals/effects/pdf/reportmixture_toxicity.pdf, 13th June 2014, 2 pm

  7. Pohl HR, Hansen H, Chou CHSJ (1997) Public health guidance values for chemical mixtures: current practice and future directions. Regul Toxicol Pharmacol 26:322–329

    CAS  PubMed  Google Scholar 

  8. Kordas K, Queirolo EI, Ettinger AS, Wright RO, Stoltzfus RJ (2010) Prevalence and predictors of exposure to multiple metals in preschool children from Montevideo, Uruguay. Sci Total Environ 408:4488–4494

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Calderon J, Ortiz-Perez D, Yanez L, Díaz-Barriga F (2003) Human exposure to metals. Pathways of exposure, biomarkers of effect, and host factors. Ecotoxicol Environ Saf 56:93–103

    CAS  PubMed  Google Scholar 

  10. Lister LJ, Svendsen C, Wright J, Hooper HL, Spurgeon DJ (2011) Modelling the joint effects of a metal and a pesticide on reproduction and toxicokinetics in Lumbricid earthworms. Environ Int 37:663–670

    CAS  PubMed  Google Scholar 

  11. Abboud P, Wilkinson KJ (2013) Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii. Environ Poll 179:33–38

    CAS  Google Scholar 

  12. Agency for Toxic Substances and Disease Registry (ASTDR), U.S. Department of Health and Human Sciences (2004). Interaction profile for: Lead, Manganese, Zinc and Copper

  13. Lucchini R, Zimmerman N (2009) Lifetime cumulative exposure as a threat for neurodegeneration: need for prevention strategies on a global scale. NeuroToxicology 30(6):1144–1148

    PubMed  Google Scholar 

  14. Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46

    CAS  PubMed  Google Scholar 

  15. Csavina J, Field J, Taylor MP, Gao S, Landázuri A, Betterton EA, Sáez AE (2012) A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci Total Environ 433:58–73

    CAS  PubMed  Google Scholar 

  16. Agency for Toxic Substances and Disease Registry ASTDR), U.S. Department of Health and Human Sciences, (2007) b. Toxicological profile for Lead

  17. Agency for Toxic Substances and Disease Registry (ASTDR), U.S. Department of Health and Human Sciences, (2007) c. Toxicological profile for Manganese

  18. Finkelstein Y, Milatovic D, Aschner M (2007) Modulation of cholinergic systems by manganese. NeuroToxicology 28:1003–1014

    CAS  PubMed  Google Scholar 

  19. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    PubMed  Google Scholar 

  20. Patrick L (2006) Lead toxicity, a review of the literature. Part I: exposure, evaluation, and treatment. Altern Med Rev 11(1):2–22

    PubMed  Google Scholar 

  21. Rodríguez VM, Jiménez-Capdeville ME, Giordano M (2003) The effects of arsenic exposure on the nervous system. Toxicol Lett 145:1–18

    PubMed  Google Scholar 

  22. Casarett & Doull’s (2013) Toxicology: the basic science of poisons. 8th Ed. McGraw-Hill

  23. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87

    CAS  PubMed  Google Scholar 

  24. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123(2):305–332

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Moinuddin M (2004) Drinking death in groundwater: arsenic contamination as a threat to water security for Bangladesh. ACDIS Occasional Paper. http://acdis.illinois

  26. Agency for Toxic Substances and Disease Registry (ASTDR), U.S. Department of Health and Human Sciences, (2007) a. Toxicological profile for Arsenic

  27. Kakkar P, Jaffery FN (2005) Biological markers for metal toxicity. Environ Toxicol Pharmacol 19:335–349

    CAS  PubMed  Google Scholar 

  28. Santamaria AB (2008) Manganese exposure, essentiality & toxicity. Indian J Med Res 128:484–500

    CAS  PubMed  Google Scholar 

  29. Wright RO, Amarasiriwardena C, Woolf AD, Jime R, Bellinger DC (2006) Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. NeuroToxicology 27:210–216

    CAS  PubMed  Google Scholar 

  30. Gulson B, Mizon K, Taylor A, Korsch M, Stauber J, Davise JJM, Louie H, Wu M, Swan H (2006) Changes in manganese and lead in the environment and young children associated with the introduction of methylcyclopentadienyl manganese tricarbonyl in gasoline—preliminary results. Environ Res 100:100–114

    CAS  PubMed  Google Scholar 

  31. Menkes DB, Fawcett JP (1997) Too easily lead? Health effects of gasoline additives. Environ Health Perspect 105(3):270–273

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Weiss B (2006) Economic implications of manganese neurotoxicity. NeuroToxicology 27:362–368

    CAS  PubMed  Google Scholar 

  33. Nelson G, Criswell SR, Zhang J, Murray J, Racette BA (2012) Research capacity development in South African manganese mines to bridge exposure and neuropathologic outcomes. NeuroToxicology 27:315–326

    Google Scholar 

  34. Basu N, Nama DH, Kwansaa-Ansah E, Renne EP, Nriagu JO (2011) Multiple metals exposure in a small-scale artisanal gold mining community. Environ Res 111:463–467

    CAS  PubMed  Google Scholar 

  35. Choudhury H, Mudipalli A (2008) Potential considerations and concerns in the risk characterization for the interaction profiles of metals. Indian J Med Res 128:462–483

    CAS  PubMed  Google Scholar 

  36. Dhatrak SV, Nandi SS (2009) Risk assessment of chronic poisoning among Indian metallic miners. Indian J Occup Environ Med 13(2):60–64

    PubMed Central  PubMed  Google Scholar 

  37. Rodriguez VM, Dufour L, Carrizales L, Diaz-Barriga F, Jimenez-Capdeville ME (1998) Effects of oral exposure to mining waste on in vivo dopamine release from rat striatum. Environ Health Perspect 106(8):487–491

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Yim JH, Kim KW, Kim SD (2006) Effect of hardness on acute toxicity of metal mixtures using Daphnia magna: prediction of acid mine drainage toxicity. J Hazard Mater 38:16–21

    Google Scholar 

  39. Sansar W, Ahboucha S, Gamrani H (2011) Chronic lead intoxication affects glial and neural systems and induces hypoactivity in adult rat. Acta Histochem 113:601–607

    CAS  PubMed  Google Scholar 

  40. Reckziegel P, Dias VT, Benvegnú D, Boufleur N, Barcelos RCS, Segat HJ, dos Pase CS, Santos FCMM, Bürger ME (2001) Locomotor damage and brain oxidative stress induced by lead exposure are attenuated by gallic acid treatment. Toxicol Let 203:74–81

    Google Scholar 

  41. Halatek T, Sinczuk-Walczak H, Rabieh S, Wasowicz W (2009) Association between occupational exposure to arsenic and neurological, respiratory and renal effects. Toxicol Appl Pharmacol 239:193–199

    CAS  PubMed  Google Scholar 

  42. Lockitch G (1993) Perspectives on lead toxicity. Clin Biochem 26:371–381

    CAS  PubMed  Google Scholar 

  43. Zheng W, Aschner M, Ghersi-Egeac JF (2003) Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol 192(1):1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Mameli O, Caria MA, Melis F, Solinas A, Tavera C, Ibba A, Tocco M, Flore C, Randaccio FS (2001) Neurotoxic effect of lead at low concentrations. Brain Res Bull 55(2):269–275

    CAS  PubMed  Google Scholar 

  45. Moreira EG, Vassilieff I, Vassilieff VS (2001) Developmental lead exposure: behavioral alterations in the short and long term. Neurotoxicol Teratol 23:489–495

    CAS  PubMed  Google Scholar 

  46. van Wijngaarden E, Winters PC, Cory-Slechta DA (2011) Blood lead levels in relation to cognitive function in older U.S. adults. NeuroToxicology 32:110–115

    PubMed  Google Scholar 

  47. García-Chávez E, Jiménez I, Segura B, Del Razo LM (2006) Lipid oxidative damage and distribution of inorganic arsenic and its metabolites in the rat nervous system after arsenite exposure: influence of alpha tocopherol supplementation. NeuroToxicology 27:1024–1031

    PubMed  Google Scholar 

  48. Yadav RS, Chandravanshi LP, Shukla RK, Sankhwar ML, Ansari RW, Shukla PK, Pant AB, Khanna VK (2011) Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats. NeuroToxicology 32(6):760–768

    CAS  PubMed  Google Scholar 

  49. de Vizcaya-Ruiza A, Barbiera O, Ruiz-Ramos R, Cebrian ME (2009) Biomarkers of oxidative stress and damage in human populations exposed to arsenic. Mut Res 674:85–92

    Google Scholar 

  50. Mejía JJ, Díaz-Barriga F, Calderón J, Ríos C, Jiménez-Capdeville ME (1997) Effects of lead-arsenic combined exposure on central monoaminergic systems. Neurotoxicol Teratol 19(6):489–497

    PubMed  Google Scholar 

  51. Health Canada, Water, Air & Climate Change Bureau (2008) Human health risk assessment for inhaled manganese Draft. http://www.hc-sc.gc.ca/ewh-semt/alt_formats/hecssesc/pdf/air/out-ext/_consult/draft_ebauche/manganese-eng.pdf, 2th May 2014, 4 pm

  52. Tjälve H, Henriksson J (1999) Uptake of metals in the brain via olfactory pathways. Neurotoxicology 20(2–3):181–195

    PubMed  Google Scholar 

  53. Normandin L, Beaupre LA, Salehi F, St.-Pierre A, Kennedy G, Mergler D, Butterworth RF, Philippe S, Zayed J (2004) Manganese distribution in the brain and neurobehavioral changes following inhalation exposure of rats to three chemical forms of manganese. NeuroToxicology 25:433–441

    CAS  PubMed  Google Scholar 

  54. Bowler RM, Gysens S, Diamond E, Nakagawa S, Drezgic M, Roels HA (2006) Manganese exposure: neuropsychological and neurological symptoms and effects in welders. NeuroToxicology 27:315–326

    CAS  PubMed  Google Scholar 

  55. Kim HY, Lee CK, Lee JT, Moon CS, Ha SC, Kang SG, Kim DH, Kim HD, Ahn JH, Lee SB, Kang MG (2009) Effects of manganese exposure on dopamine and prolactin production in rat. NeuroReport 20(1):69–73

    CAS  PubMed  Google Scholar 

  56. Shukla GS, Chandra SV (1987) Concurrent exposure to lead, manganese, and cadmium and their distribution to various brain regions, liver, kidney, and testis of growing rats. Arch Environ Contam Toxicol 16:303–310

    CAS  PubMed  Google Scholar 

  57. Chandra SV, Mohd. Ali M, Saxena DK, Murthy RC (1981) Behavioral and neurochemical changes in rats simultaneously exposed to manganese and lead. Arch Toxicol 49:49–56

    CAS  PubMed  Google Scholar 

  58. Kim Y, Kim BN, Hong YC, Shin MS, Yoo HJ, Kim JW, Bhang SY, Cho SC (2009) Co-exposure to environmental lead and manganese affects the intelligence of school-aged children. NeuroToxicology 30:564–571

    CAS  PubMed  Google Scholar 

  59. Carrizales L, Razoa I, Tellez-Hernandez J, Torres-Nerioa R, Torres A, Batres LE, Cubillas AC, Dáaz-Barriga F (2006) Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: importance of soil contamination for exposure. Environ Res 101:1–10

    CAS  PubMed  Google Scholar 

  60. Wright RO, Baccarelli A (2009) Metals and neurotoxicology. J Nutr 137(12):2809–2813

    Google Scholar 

  61. Flora SJS (2011) Arsenic-induced oxidative stress and its reversibility. Free Rad Biol Med 51:257–281

    CAS  PubMed  Google Scholar 

  62. Flora SJS, Bhadauria S, Pant SC, Dhaked RK (2005) Arsenic induced blood and brain oxidative stress and its response to some thiol chelators in rats. Life Sci 77:2324–2337

    CAS  PubMed  Google Scholar 

  63. Gurer H, Ercal N (2000) Can antioxidants be beneficial in the treatment of lead poisoning? Free Rad Biol Med 29(10):927–945

    CAS  PubMed  Google Scholar 

  64. Milatovic D, Milatovic SZ, Gupta RC, Yu Y, Aschner M (2009) Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicol Appl Pharmacol 240:219–225

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Erikson KM, Dobson AW, Dorman DC, Aschner M (2004) Manganese exposure and induced oxidative stress in the rat brain. Sci Total Environ 1(334–335):409–416

    Google Scholar 

  66. Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayiotidis MI (2009) Environmental toxicity, oxidative stress and apoptosis: Ménage à Trois. Mutat Res 674:3–22

    CAS  PubMed  Google Scholar 

  67. Zhang S, Fu J, Zhou Z (2004) In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicol in Vitro 18:71–77

    PubMed  Google Scholar 

  68. Jain A, Yadav A, Bozhkov AI, Padalko VI, Flora SJS (2011) Therapeutic efficacy of silymarin and naringenin in reducing arsenic-induced hepatic damage in young rats. Ecotoxicol Environ Saf 74:607–614

    CAS  PubMed  Google Scholar 

  69. Liccione JJ, Maines MD (1988) Selective vulnerability of glutathione metabolism and cellular defense mechanisms in rat striatum to manganese. J Pharmacol Exp Ther 247(1):156–161

    CAS  PubMed  Google Scholar 

  70. Malecki EA, Lo HC, Yang H, Davis CD, Ney DM, Greger JL (1995) Tissue manganese concentrations and antioxidant enzyme activities in rats given total parenteral nutrition with and without supplemental manganese. J Parenter Enteral Nutr 19(3):222–226

    CAS  Google Scholar 

  71. Ali N, Hoque A, Haque A, Salam KA, Karim R, Rahman A, Islam K, Saud ZA, Khalek A, Akhand AA, Hossain M, Mandal A, Karim R, Miyataka H, Himeno S, Hossain K (2010) Association between arsenic exposure and plasma cholinesterase activity: a population based study in Bangladesh. Environ Health 9(36):1–9

    Google Scholar 

  72. Ademuyiwa O, Ugbaja RN, Rotimi SO, Abama E, Okediran BS, Dosumu OA, Onunkwor BO (2007) Erythrocyte acetylcholinesterase activity as a surrogate indicator of lead-induced neurotoxicity in occupational lead exposure in Abeokuta, Nigeria. Environ Toxicol Pharmacol 24:183–188

    CAS  PubMed  Google Scholar 

  73. Rosemberg DB, da Rocha RF, Rico EP, Zanotto- Filho A, Dias RD, Bogo MR, Bonan CD, Moreira JCF, Klamt F, Souza DO (2010) Taurine prevents enhancement of acetylcholinesterase activity induced by acute ethanol exposure and decreases the level of markers of oxidative stress in zebrafish brain. Neuroscience 171:683–692

    CAS  PubMed  Google Scholar 

  74. Santos D, Milatovic D, Andrade V, Batoréu MC, Aschner M, Marreilha dos Santos AP (2012) The inhibitory effect of manganese on acetylcholinesterase activity enhances oxidative stress and neuroinflammation in the rat brain. Toxicology 292(2–3):90–98

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Amal EA, Mona HM (2009) Protective effect of some antioxidants on the brain of adult male albino rats, Rattus rattus, exposed to heavy metals. Biosci Res 6(1):12–19

    Google Scholar 

  76. Ellingsen DG, Haug E, Gaarder PI, Bast-Pettersen R, Thomassen Y (2003) Endocrine and immunologic markers in manganese alloy production workers. Scand J Work Environ Health 29(3):230–238

    CAS  PubMed  Google Scholar 

  77. Jones DC, Miller GW (2008) The effects of environmental neurotoxicants on the dopaminergic system: a possible role in drug addiction. Biochem Pharmacol 76:569–581

    CAS  PubMed  Google Scholar 

  78. Prabhakarana K, Ghoshb D, Chapmana GD, Gunasekara PG (2008) Molecular mechanism of manganese exposure-induced dopaminergic toxicity. Brain Res Bull 76:361–367

    Google Scholar 

  79. Rodríguez VM, Limón-Pacheco JH, Carrizales L, Mendoza-Trejo MS, Giordano M (2010) Chronic exposure to low levels of inorganic arsenic causes alterations in locomotor activity and in the expression of dopaminergic and antioxidant systems in the albino rat. Neurotoxicol Teratol 32:640–647

    PubMed  Google Scholar 

  80. Roses OE, Alvarez S, Conti MI, Nobile RA, Villaami EC (1989) Correlation between lead and prolactin in males exposed and unexposed to lead in Buenos Aires (Argentina) area. Bull Environ Contam Toxicol 42:438–442

    CAS  PubMed  Google Scholar 

  81. Ghareeb DA, Hussien HM, Khalil AA, El-Saadani MA, Ali AN (2010) Toxic effects of lead exposure on the brain of rats: involvement of oxidative stress, inflammation, acetylcholinesterase, and the beneficial role of flaxseed extract. Toxicol Environ Chem 92:187–195

    CAS  Google Scholar 

  82. Shavali S, Sens DA (2008) Synergistic neurotoxic effects of arsenic and dopamine in human dopaminergic neuroblastoma SH-SY5Y cells. Toxicol Sci 102(2):254–261

    CAS  PubMed  Google Scholar 

  83. Case AJ, Madsen JM, Motto DG, Meyerholz DK, Domann FE (2013) Manganese superoxide dismutase depletion in murine hematopoietic stem cells perturbs iron homeostasis, globin switching, and epigenetic control in erythrocyte precursor cells. Free Radical Biol Med 56:17–27

    CAS  Google Scholar 

  84. Cory-Slechta DA (1990) Alterations in tissue Pb distribution and hematopoietic indices during advanced age. Arch Toxicol 64(1):31–37

    CAS  PubMed  Google Scholar 

  85. Pereira JA, Das P, Chaklader M, Chatterjee S, Basak P, Chaudhuri S, Law S (2010) Effects of inorganic arsenic on bone marrow hematopoietic cells: an emphasis on apoptosis and Sca-1/c-Kit positive population. J Stem Cells 5(3):117–127

    PubMed  Google Scholar 

  86. Demasi M, Penatti CAA, Delucia RT, Bechara EJH (1996) The prooxidant effect of 5-aminolevulinic acid in the brain tissue of rats: implications in neuropsychiatric manifestations in porphyrias. Free Radical Biol Med 20(3):291–299

    CAS  Google Scholar 

  87. Hift RJ, Thunell S, Brun A (2011) Drugs in porphyria: from observation to a modern algorithm-based system for the prediction of porphyrogenicity. Pharmacol Ther 132(2):158–169

    CAS  PubMed  Google Scholar 

  88. Kauppinen R (2005) Porphyrias. Lancet 365:241–252

    CAS  PubMed  Google Scholar 

  89. Bleiberg J, Wallen M, Brodkin R, Applebaum IL, Newark NJ (1967) Industrially acquired porphyria. Arch Dermatol 89:793–797

    Google Scholar 

  90. Quintanilla-Vega B, Hernandez A, Mendoza-Figueroa T (1996) Reduction in porphyrin excretion as a sensitive indicator of lead toxicity in primary cultures of adult rat hepatocytes. Toxicol in Vitro 10:675–683

    CAS  PubMed  Google Scholar 

  91. Ng JCT, Wang JP, Zheng B, Zhai C, Maddalena R, Liu F (2005) Urinary porphyrins as biomarkers for arsenic exposure among susceptible populations in Guizhou province, China. Toxicol Appl Pharmacol 206:176–184

    CAS  PubMed  Google Scholar 

  92. Woods JS, Martin MD, Leroux BG, DeRouen TA, Bernardo MF, Luis HS, Leitão JG, Simmonds PL, Rue TC (2009) Urinary porphyrin excretion in normal children and adolescents. Clin Chim Acta 405:104–109

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Maines MD (1980) Regional distribution of the enzymes of haem biosynthesis and the inhibition of 5-aminolaevulinate synthase by manganese in the rat brain. Biochem J 190:315–321

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Qato MK, Maines MD (1985) Regulation of heme and drug metabolism activities in the brain by manganese. Biochem Biophys Res Commun 128(1):18–24

    CAS  PubMed  Google Scholar 

  95. Adhikari A, Penatti CAA, Resende RR, Ulrich H, Britto LRG, Bechara EJH (2006) 5-Aminolevulinate and 4, 5-dioxovalerate ions decrease GABAA receptor density in neuronal cells, synaptosomes and rat brain. Brain Res 1093:95–104

    CAS  PubMed  Google Scholar 

  96. Guolo M, Stella AM, Melito V, Parera V, Batle AMC (1996) Altered 5-aminolevulinic acid metabolism leading to pseudophorphyria in hemodialysed patients. lnt J Biochem Cell Bid 28:311–317

    CAS  Google Scholar 

  97. Ahamed M, Siddiqui MKJ (2007) Low level lead exposure and oxidative stress: current opinions. Clin Chim Acta 383:57–64

    CAS  PubMed  Google Scholar 

  98. Ryter SW, Tyrrell RM (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radical Biol Med 28(2):289–309

    CAS  Google Scholar 

  99. Onuki J, Chen Y, Teixeira PC, Schumachera RI, Medeiros MHG, Van Houten B, Di Mascio P (2004) Mitochondrial and nuclear DNA damage induced by 5-aminolevulinic acid. Arch Biochem Biophys 432:178–187

    CAS  PubMed  Google Scholar 

  100. Moore MR (1998) The biochemistry of heme synthesis in porphyria and in the porphyrinurias. Clin Dermatol 16:203–223

    CAS  PubMed  Google Scholar 

  101. Krishnamohan M, Qi L, Lam PKS, Moore MR, Ng JC (2007) Urinary arsenic and porphyrin profile in C57BL/6J mice chronically exposed to monomethylarsonous acid (MMAIII) for two years. Toxicol Appl Pharmacol 224:89–97

    CAS  PubMed  Google Scholar 

  102. Ricchelli F (1995) New trends in photobiology—photophysical properties of porphyrins in biological membranes. J Photochem Photobiol 29:109–118

    CAS  Google Scholar 

  103. Rachakonda V, Pan TH, Le WD (2004) Biomarkers of neurodegenerative disorders: how good are they? Cell Res 14(5):349–360

    Google Scholar 

  104. Costa LG, Manzo L (1995) Biochemical markers of neurotoxicity: research and epidemiological applications. Toxicol Lett 77:137–144

    CAS  PubMed  Google Scholar 

  105. Nielsen GD, Øvrebø S (2008) Background, approaches and recent trends for setting health-based occupational exposure limits: a minireview. Regul Toxicol Pharmacol 51:253–269

    CAS  PubMed  Google Scholar 

  106. Phoon HW (1998) Manganese exposure and biological indicators. Sing Med J 29:93–94

    Google Scholar 

  107. Batterman S, Su FC, Jia C, Naidoo RN, Robins T, Naik I (2011) Manganese and lead in children’s blood and airborne particulate matter in Durban, South Africa. Sci Total Environ 409:1058–1068

    CAS  PubMed  Google Scholar 

  108. Fukui Y, Miki M, Ukai H, Okamoto S, Takada S, Higashikawa K, Ikeda M (1999) Urinary lead as a possible surrogate of blood lead among workers occupationally exposed to lead. Int Arch Occup Environ Health 72:516–520

    CAS  PubMed  Google Scholar 

  109. Moreira MFR, Neves EB (2008) Uso do chumbo em urina como indicador de exposição e sua relação com chumbo no sangue. Cad Saúde Pública, Rio de Janeiro 24(9):2151–2159

    Google Scholar 

  110. Marchiset-Ferlay N, Savanovitch C, Sauvant-Rocha MP (2012) What is the best biomarker to assess arsenic exposure via drinking water? Environ Int 39:150–171

    CAS  PubMed  Google Scholar 

  111. Morton J, Mason H (2006) Speciation of arsenic compounds in urine from occupationally unexposed and exposed persons in the U.K. using a routine LC-ICP-MS Method. J Anal Toxicol 30:293–301

    CAS  PubMed  Google Scholar 

  112. Chen CJ, Hsu L, Wang CH, Shihl WL, Hsu YH et al (2005) Biomarkers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan. Toxicol Appl Pharmacol 206:198–206

    CAS  PubMed  Google Scholar 

  113. Bader M, Dietz MC, Ihrig A, Triebig G (1999) Biomonitoring of manganese in blood, urine and axillary hair following low-dose exposure during the manufacture of dry cell batteries. Int Arch Occup Environ Health 72:521–527

    CAS  PubMed  Google Scholar 

  114. Cowan DM (2008) Exploring biomarkers of manganese exposure in humans and animals: the manganese-iron ratio as a potential tool for identification of early-onset manganism. Doctoral thesis

  115. Slikker JTW, Bowyer JF (2005) Biomarkers of adult and developmental neurotoxicity. Toxicol Appl Pharmacol 206:255–260

    CAS  PubMed  Google Scholar 

  116. Bergdahl IA, Grubb A, Schütz A, Desnick RJ, Wetmur JG, Sassa S, Skerfving S (1997) Lead binding to delta-aminolevulinic acid dehydratase (ALAD) in human erythrocytes. Pharmacol Toxicol 81(4):153–158

    CAS  PubMed  Google Scholar 

  117. Scinicariello F, Murray HE, Moffett DB, Abadin HG, Sexton MJ, Fowler BA (2007) Lead and delta-aminolevulinic acid dehydratase polymorphism: where does it lead? A meta-analysis. Environ Health Perspect 115(1):35–41

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Tian T, Ali B, Qin Y, Malik Z, Gill RA, Ali S, Zhou W (2014) Alleviation of lead toxicity by 5-aminolevulinic acid is related to elevated growth, photosynthesis, and suppressed ultrastructural damages in oilseed rape. Biomed Res Int. doi:10.1155/2014/530642. Epub 2014 Feb 11

    Google Scholar 

  119. Loffredo CA, Aposhian HV, Cebrian ME, Yamauchi H, Silbergeld EK (2003) Variability in human metabolism of arsenic. Environ Res 92(2):85–91

    CAS  PubMed  Google Scholar 

  120. Antonelli R, Shao K, Thomas DJ, Sams R, Cowden J (2014) AS3MT, GSTO, and PNP polymorphisms: impact on arsenic methylation and implications for disease susceptibility. Environ Res 132:156–167

    CAS  PubMed  Google Scholar 

  121. McClintock TR, Chen Y, Bundschuh J, Oliver JT, Navoni J, Olmos V, Lepori EV, Ahsan H, Parvez F (2012) Arsenic exposure in Latin America: biomarkers, risk assessments and related health effects. Sci Total Environ 1(429):76–91

    Google Scholar 

  122. Vinayagamoorthy N, Krishnamurthi K, Devi SS, Naoghare PK, Biswas R, Biswas AR, 2850, GSTM1, NQO1 genes and their correlation with biomarkers in manganese miners of Central India. Chemosphere 81(10): 1286–1291

  123. Meeker JD, Rossano MG, Protas B, Diamond MP, Puscheck E, Daly D, Paneth N, Wirth JJ (2009) Multiple metals predict prolactin and thyrotropin (TSH) levels in men. Environ Res 109(7):869–873

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Alessio L, Luchini R (2006) Prolactin changes as a consequence of chemical exposure. Environ Health Perspect 114(10):573–574

    Google Scholar 

  125. Goering PL, Fowler BA (1987) Metal constitution of metallothionein influences inhibition of 5-aminolaevulinic acid dehydratase (porphobilinogen synthase) by lead. Biochem J 245:339–345

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Seth TD, Agarwal LN, Satija NK, Hasan MZ (1976) The effect of lead and cadmium on liver, kidney, and brain levels of cadmium, copper, lead, manganese, and zinc, and on erythrocyte ALAD activity in mice. Bull Environ Contam Toxicol 16(2):190–196

    CAS  PubMed  Google Scholar 

  127. Chibe M, Sinohara A, Matsushita K, Watanabe H, Inaba Y (1996) Indices of lead exposure in blood and urine of lead exposed workers and concentrations of major trace elements and activities of SOD, GSH-Px and catalase in their blood. J Exp Med 178:49–62

    Google Scholar 

  128. Rocha JBT, Pereira ME, Emanuell T, Christofari RS, Souza DO (1995) Effect of treatment with mercury chloride and lead acetate during the second stage of rapid postnatal brain growth on 6-aminolevulinic acid dehydratase (ALA-D) activity in brain, liver, kidney and blood of suckling rats. Toxicology 100:27–37

    CAS  PubMed  Google Scholar 

  129. Wang Q, Zhao HU, Wang Q, Zhao HH, Chen JW, Hao QL, Gu KD, Zhu YX, Zhou YK, Ye LX (2010) d-Aminolevulinic acid dehydratase activity, urinary d-aminolevulinic acid concentration and zinc protoporphyrin level among people with low level of lead exposure. Int J Hyg Environ Health 213:52–58

    CAS  PubMed  Google Scholar 

  130. Makino S, Tsruta H, Takata T (2000) Relationship between blood lead level and urinary ALA level in workers exposed to very low levels of lead. Ind Health 38:95–98

    CAS  PubMed  Google Scholar 

  131. Bardullas U, Limón-Pacheco JH, Giordano M, Carrizales L, Mendoza-Trejo MS, Rodríguez VM (2009) Chronic low-level arsenic exposure causes gender-specific alterations in locomotor activity, dopaminergic systems, and thioredoxin expression in mice. Toxicol Appl Pharmacol 239:169–177

    CAS  PubMed  Google Scholar 

  132. Jahan S, Ahmed S, Razzaq S, Amed H (2012) Adverse effects of arsenic exposure in the mammary glands of adult female rats. Pakistan J Zool 44(3):691–697

    CAS  Google Scholar 

  133. Kobayashi H, Yuyama A, Ishihara M, Matsusaka N (1987) Effects of arsenic on cholinergic parameters in brain in vitro. Neuropharmacology 26(12):1707–1713

    CAS  PubMed  Google Scholar 

  134. Roy S, Chattoraj A, Bhattacharya S (2006) Arsenic-induced changes in optic tectal histoarchitecture and acetylcholinesterase-acetylcholine profile in Channa punctatus: amelioration by selenium. Comp Biochem Physiol 144:16–24

    Google Scholar 

  135. Yousef MI, El-Demerdash FM, Radwan FME (2008) Sodium arsenite induced biochemical perturbations in rats: ameliorating effect of curcumin. Food Chem Toxicol 46:3506–3511

    CAS  PubMed  Google Scholar 

  136. Bhadauria S, Flora SJ (2004) Arsenic induced inhibition of delta-aminolevulinate dehydratase activity in rat blood and its response to meso 2,3-dimercaptosuccinic acid and monoisoamyl DMSA. Biomed Environ Sci 17(1):101–108

    PubMed  Google Scholar 

  137. Wu H, Manonmanii K, Lam PKS, Huang SH, Wang JP, Ng JC (2004) Urinary arsenic speciation and porphyrins in C57Bl/6J mice chronically exposed to low doses of sodium arsenate. Toxicol Lett 154:149–157

    CAS  PubMed  Google Scholar 

  138. Takser L, Mergler D, de Grosbois S, Smargiassi A, Lafond J (2004) Blood manganese content at birth and cord serum prolactin levels. Neurotoxicol Teratol 26:811–815

    CAS  PubMed  Google Scholar 

  139. Aschner M (2006) Manganese as a potential confounder of serum prolactin. Environ Health Perspect 114(8):A458

    PubMed Central  PubMed  Google Scholar 

  140. Govonia S, Lucchia L, Battainia F, Spanoa PF, Trabucchia M (1984) Chronic lead treatment affects dopaminergic control of prolactin secretion in rat pituitary. Toxicol Lett 20(3):237–241

    Google Scholar 

  141. Adaudi AO, Aliu YO (1980) Urinary delta-aminolevulinic acid (ALA) excretion in humans and cattle as an index of exposure to lead. Vet Hum Toxicol 22(6):403–405

    CAS  PubMed  Google Scholar 

  142. Marreilha dos Santos AP, Santos ML, Batoréu MC, Aschner M (2011) Prolactin is a peripheral marker of manganese neurotoxicity. Brain Res 1382:282–290

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Wang G, Fowler BA (2008) Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic. Toxicol Appl Pharmacol 233:92–99

    CAS  PubMed  Google Scholar 

  144. Whittaker MH, Wang G, Chen XQ, Lipsky M, Smith D, Gwiazda R, Fowler BA (2010) Exposure to Pb, Cd, and As mixtures potentiates the production of oxidative stress precursors: 30-day, 90-day, and 180-day drinking water studies in rats. Toxicol Appl Pharmacol 254(2):154–166

    PubMed  Google Scholar 

  145. de Burbure C, Buchet JP, Leroyer A, Nisse C, Haguenoer JM, Mutti A et al (2006) Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: evidence of early effects and multiple interactions at environmental exposure levels. Environ Health Perspect 114(4):584–590

    PubMed Central  PubMed  Google Scholar 

  146. Zhai R, Su S, Lu X, Liao R, Ge X, He M, Huang Y, Mai S, Lu X, Christiani D (2005) Proteomic profiling in the sera of workers occupationally exposed to arsenic and lead: identification of potential biomarkers. BioMetals 18:603–613

    CAS  PubMed  Google Scholar 

  147. Jadhav SH, Sarkar SN, Kataria M, Tripathi HC (2007) Subchronic exposure to a mixture of groundwater-contaminating metals through drinking water induces oxidative stress in male rats. Environ Toxicol Pharmacol 23:205–211

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge financial support from FCT strategic project PEst-OE/SAU/UI4013/2011, Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa and from the National Institute of Health (NIH R01ES10563).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Marreilha dos Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, V.M., Mateus, M.L., Batoréu, M.C. et al. Lead, Arsenic, and Manganese Metal Mixture Exposures: Focus on Biomarkers of Effect. Biol Trace Elem Res 166, 13–23 (2015). https://doi.org/10.1007/s12011-015-0267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0267-x

Keywords

Navigation