Skip to main content
Log in

Allozyme polymorphism in Drosophila

  • Review Article
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

Abstract

Every population possesses genetic variations which are achieved through gene mutation, genetic recombination, hybridization, gene duplication etc. These genetic variations provide raw materials for evolutionary forces to create a better surviving species. Genetic polymorphism is reflected at every level in the populations, for example, at phenotypic, chromosomal, protein and DNA levels. Protein or enzyme polymorphisms have been well studied in various organisms including Drosophila and humans. Drosophila has proven to be a good model organism for carrying out polymorphism studies. Among the different species of Drosophila, there is a wide variation in the levels of allozyme polymorphisms and heterozygosities which depends upon species, geographical regions, number and nature of loci in question etc. In Drosophila, the average polymorphic enzyme loci and average heterozygosity ranges from 35 to 70 percent and 10 to 20 percent respectively. The genetic differentiation as observed through allozyme or isozyme variation affords an important parameter in evaluating the phylogenetic relationships between different species of Drosophila and also for discussing the adaptive significance of allozyme polymorphisms. Therefore, this review attempts to compile all studies on allozyme polymorphism in Drosophila that have been undertaken so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayala, F.J. 1983. Genetic polymorphism: From electrophoresis to DNA sequences. Experientia 39: 813–823.

    Article  CAS  PubMed  Google Scholar 

  • Ayala, F.J., and J.R. Powell. 1972a. Enzyme variability in the Drosophila willistoni group. VI. Levels of polymorphism and the physiological function of enzymes. Biochemical Genetics 70: 331–345.

    Article  Google Scholar 

  • Ayala, F.J., and J.R. Powell. 1972b. Allozymes as diagnostic characters of sibling species of Drosophila. Proceedings of National Academic of Sciences 69: 1094–1096.

    Article  CAS  Google Scholar 

  • Ayala, F.J., C.A. Mourao, S. Perez-Salas, R. Richmond, and Th Dobzhansky. 1970. Enzyme variability in the Drosophila willistoni Group I. Genetic differentiation among sibling species. Proceedings of National Academic of Sciences 67: 225–232.

    Article  CAS  Google Scholar 

  • Ayala, F.J., J.R. Powell, and Th Dobzhansky. 1971. Polymorphisms in Continental and Island populations of Drosophila willistoni. Proceedings of National Academic of Sciences 68: 2480–2483.

    Article  CAS  Google Scholar 

  • Ayala, F.J., J.R. Powell, M.L. Tracey, C.A. Mourao, and S. Perez-Salas. 1972. Enzyme variability in the Drosophila willistoni group IV. Genic variation in natural populations of Drosophila willistoni. Genetics 70: 113–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayala, F.J., M.L. Tracey, L.G. Barr, J.F. McDonald, and S. Perez-Salas. 1974. Genetic variation in natural population of five Drosophila species and the hypothesis of selective neutrality of protein polymorphisms. Genetics 77: 343–384.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barker, J.S.F. 1979. Inter-locus interactions: A review of experimental evidence. Theoretical Population Biology 16: 577–611.

    Article  Google Scholar 

  • Barker, J.S.F., P.D. East, and B.S. Weir. 1986. Temporal and microgeographic variation in allozyme frequencies in natural populations of Drosophila buzzatii. Genetics 112: 577–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bubliy, O.A., A.G. Imasheva, and O.E. Lazebnyi. 1994. Geographic variation of Adh, α-Gpdh, and Est-6 in Eurasian natural populations of Drosophila melanogaster. Genetika 30: 467–477.

    Google Scholar 

  • Bubliy, O.A., B.A. Kalabushkin, and A.G. Imasheva. 1999. Geographic variation of six allozyme loci in Drosophila melanogaster: An analysis of data from different continents. Hereditas 130: 25–32.

    Article  CAS  PubMed  Google Scholar 

  • Carson, H.L. 1958. Recombination within populations: Response to selection under different conditions of recombination in Drosophila. Cold Spring Harbor Symposium on Quantitative Boilogy 23: 291–306.

    Article  CAS  Google Scholar 

  • Cavener, D.R., and M.T. Clegg. 1981. Temporal stability of allozyme frequencies in a natural population of Drosophila melanogaster. Genetics 98: 613–623.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, Y. 1977. Chromosomal polymorphism in Korean natural population of Drosophila melanogaster. Genetica 47: 155–160.

    Article  Google Scholar 

  • Cobbs, G., and S. Prakash. 1977. A comparative study of the Esterase-5 locus in Drosophila pseudoobscura, Drosophila persimilis and Drosophila miranda. Genetics 85: 697–711.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobzhansky, Th. 1970. Genetics of the Evolutionary Process. New York: Columbia University Press.

    Google Scholar 

  • Franklin, I.R. 1981. An analysis of temporal variation at isozyme loci in Drosophila melanogaster. In: Genetic Studies of Drosophila populations, ed. Gibson J. B. and Oakeshott J. G. Proceedings of the 1979 Kiola conference, Australian National University, Canberra, pp. 217–236.

  • Gillespie, J.H., and K.-I. Kojima. 1968. The degree of polymorphism in enzyme involved in energy production compared to that in non-specific enzymes in two Drosophila ananassae populations. Proceedings of National Academic of Sciences 61: 582–601.

    Article  CAS  Google Scholar 

  • Hadrick, P.W., S. Jain, and L. Holden. 1978. Multilocus systems in evolution. Evolutionary Biology 11: 101–184.

    Article  Google Scholar 

  • Harris, H. 1966. Enzyme polymorphism in man. Proceedings of the Royal Society of London, B: Biological Sciences 164: 298–310.

    Article  CAS  PubMed  Google Scholar 

  • Hegde, S.N., and N.B. Krishnamurthy. 1976. Studies on the genetics of isozymes in the hybrids of Drosophila bipectinata complex. Australian Journal of Zoology 27: 421–431.

    Article  Google Scholar 

  • Hill, W.G., and A. Robertson. 1968. Linkage disequilibrium in finite populations. Theoretical and Applied Genetics 38: 226–231.

    Article  CAS  PubMed  Google Scholar 

  • Houle, D. 1989. Allozyme associated heterosis in Drosophila melanogaster. Genetics 123: 789–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue, Y., and T.K. Watanabe. 1979. Inversion polymorphisms in Japanese natural populations of Drosophila melanogaster. Japanese Journal of Genetics 54: 69–82.

    Article  Google Scholar 

  • Inoue, Y., Y.N. Tobari, K. Tsuno, and T.K. Watanabe. 1984. Association of chromosome and enzyme polymorphism in natural and cage population of Drosophila melanogaster. Genetics 106: 267–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iriarte, P.J.F., C. Rodriguez, and E. Hasson. 2002. Inversion and allozyme polymorphism show contrasting patterns of microgeographical population structure in a natural population of Drosophila buzzatii from Argentina. Journal of Evolutionary Biology 15: 226–234.

    Article  Google Scholar 

  • Izquierdo, J.I., and J. Rubio. 1989. Allozyme polymorphism at the α-Gpdh and Adh loci and fitness in Drosophila melanogaster. Heredity 63: 343–352.

    Article  PubMed  Google Scholar 

  • Johnson, F.M. 1971. Isozyme polymorphism in Drosophila ananassae: Genetic diversity among island populations in the South Pacific. Genetics 68: 77–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, F.M., B.B. Wallis, and C. Denniston. 1966. Recessive esterase deficiencies controlled by alleles of Est c and Est 6 in Drosophila melanogaster. Drosophila Information Service 41: 159.

    Google Scholar 

  • Johnson, F.M., K.-I. Kojima, and M.R. Wheeler. 1969. Isozyme variation in Drosophila island populations. II. An analysis of Drosophila ananassae populations in the Samoan, Fijian and Philippine Islands. Studies in Genetics V. University Texas Publications 6918: 187–205.

    Google Scholar 

  • Kamping, A., and W.V. Delden. 1999. A long term study on interactions between the Adh and α Gpdh allozyme polymorphism and the inversion In(2L)t in a seminatural population of Drosophila melanogaster. Journal of Evolutionary Biology 12: 809–821.

    Article  Google Scholar 

  • Keith, T.P. 1983. Frequency distribution of Esterase-5 alleles in two natural populations of Drosophila pseudoobscura. Genetics 105: 135–155.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura, M., and T. Ohta. 1971. Protein polymorphism as a phase of molecular evolution. Nature 229: 467–469.

    Article  CAS  PubMed  Google Scholar 

  • King, J.L. 1967. Continuously distributed factors affecting fitness. Genetics 55: 483–492.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knibb, W.R. 1982. Chromosome inversion polymorphism in Drosophila melanogaster. II. Geographic clines and climatic associations in Australia. North America and Asia. Genetica 58: 213–222.

    Google Scholar 

  • Krimbas, C.B., and M. Loukas. 1980. The inversion polymorphism in Drosophila subobscura. Evolutionary Biology 12: 163–234.

    Google Scholar 

  • Krishnamoorti, K., and A.K. Singh. 2013. Esterase-4 locus comprises active and null alleles in Drosophila ananassae. Drosophila Information Service 96: 54–55.

    Google Scholar 

  • Kumar, S., and A.K. Singh. 2012. Electrophoretic variants of Xanthine dehydrogenase enzyme in natural populations of Drosophila ananassae. Drosophila Information Service 95: 18–20.

    Google Scholar 

  • Kumar, S., and A.K. Singh. 2013. Intra-chromosomal association between allozyme loci in Drosophila ananassae. Drosophila Information Service 96: 52–54.

    Google Scholar 

  • Kumar, S., and A.K. Singh. 2014. Complete absence of linkage disequilibrium between enzyme loci in natural populations of Drosophila ananassae. Genetika 46: 227–234.

    Article  Google Scholar 

  • Land, V.T., J. Van Putten, W.F.H. Villarroel, A. Kamping, and W.V. Delden. 2000. Latitudinal variation for two enzyme loci and an inversion polymorphism in Drosophila melanogaster from central and South America. Evolution 54: 201–209.

    Article  Google Scholar 

  • Langely, C.H., R.A. Voelker, A.J. Leigh-Brown, S. Ohnishi, B. Dickson, and E. Montgomeri. 1981. Null allele frequencies at allozyme loci in natural populations of Drosophila melanogaster. Genetics 99: 151–156.

    Google Scholar 

  • Langley, C.H. 1977. Nonrandom associations between allozymes in natural populations of Drosophila melanogaster. In Lecture notes in Biomathematics, measuring selection in natural populations, vol. 19, ed. F.B. Christiansen, and T.M. Fenchel, 265–273. NY: Springer-Verlag.

    Chapter  Google Scholar 

  • Langley, C.H., K. Ito, and R.A. Voelker. 1977. Linkage disequilibrium in natural populations of Drosophila melanogaster. Seasonal variation. Genetics 86: 447–454.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langley, C.H., Y.N. Tobari, and K.-I. Kojima. 1974. Linkage disequilibrium in natural populations of Drosophila melanogaster. Genetics 78: 921–936.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laurie-Ahlberg, C.C., and B.S. Weir. 1979. Allozymic variation and linkage disequilibrium in some laboratory populations of Drosophila melanogaster. Genetics 92: 1295–1314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewontin, R.C. 1974. The Genetic basis of evolutionary change. New York: Columbia University Press.

    Google Scholar 

  • Lewontin, R.C., and J.L. Hubby. 1966. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54: 595–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewontin, R.C., and K.-I. Kojima. 1960. The evolutionary dynamics of complex polymorphisms. Evolution 14: 458–472.

    Article  Google Scholar 

  • Marinkovic, D., and F.J. Ayala. 1975. Fitness of allozyme variants in Drosophila pseudoobscura. I. Selection at the Pgm-1 and Me-2 loci. Genetics 79: 85–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mateus, R.P., L.P.B. Machado, E.M. Moraes, and F.M. Sene. 2010. Allozyme divergence between border populations of two cryptic species of Drosophila buzzatii. Cluster species (Diptera: Drosophilidi). Biochemical Systematics and Ecology 38: 410–415.

    Article  CAS  Google Scholar 

  • Milkman, R.D. 1967. Heterosis as a major cause of heterozygosity in nature. Genetics 55: 493–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moraes, E.M., and F.M. Sene. 2002. Breeding structure in an isolated cactophilic Drosophila population from sandstone table hill. Journal of Zoological Systematics and Evolutionary Research 40: 123–128.

    Article  Google Scholar 

  • Morton, R.A., M. Choudhary, M.-L. Cariou, and R.S. Singh. 2004. A reanalysis of protein polymorphism in Drosophila melanogaster, Drosophila simulans, Drosophila sechellia, and Drosophila mauritiana: Effect of population size and selection. Genetica 120: 101–114.

    Article  CAS  PubMed  Google Scholar 

  • Mukai, T., and R.A. Voelker. 1977. The genetic structure of natural populations of Drosophila melanogaster. XIII. Further studies on linkage disequilibrium. Genetics 86: 175–185.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mulley, J.C., J.W. James, and J.S.F. Barker. 1979. Allozyme genotype environment relationships in natural populations of Drosophila buzzatii. Biochemical Genetics 17: 105–126.

    Article  CAS  PubMed  Google Scholar 

  • Norman, R.A., and S. Prakash. 1980. Developmental variation in amylase allozyme activity associated with chromosome inversions. Genetics 95: 1001–1011.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oakeshott, J.G., J.B. Gibson, P.R. Anderson, W.R. Knibb, D.G. Anderson, and G.K. Chambers. 1982. Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase clines in Drosophila melanogaster on different continents. Evolution 36: 86–96.

    Article  Google Scholar 

  • Ohta, T. 1982. Linkage disequilibrium due to random drift in finite subdivided populations. Proceedings of National Academic of Sciences 79: 1940–1944.

    Article  CAS  Google Scholar 

  • Paik, Y.K. 1979. Inversion polymorphisms in wild populations of Drosophila melanogaster. Korean Journal of Genetics 1: 18–27.

    Google Scholar 

  • Parkash, R., D. Karan, and A.K. Munjal. 1999. Geographical variation in Adh(F) and alcoholic resource utilization in Indian populations of Drosophila melanogaster. Biological Journal of the Linnean Society 66: 205–214.

    Google Scholar 

  • Parkash, R., S. Sharma, and M. Sharma. 1994a. Patterns of allozymic variation and alcohol tolerance in Indian populations of Drosophila bipectinata. Korean Journal of Genetics 16: 301–318.

    CAS  Google Scholar 

  • Parkash, R., Shamina, and Neena. 1994b. Parallel selection of ethanol and acetic-acid tolerance in Drosophila melanogaster populations from India. Genetics Selection Evolution 26: 485–494.

    Article  Google Scholar 

  • Pecsenye, K., and A. Saura. 2002. Structure of variation in enzyme activity in natural Drosophila melanogaster populations. Hereditas 136: 75–83.

    Article  PubMed  Google Scholar 

  • Pinsker, W., P. Lankinen, and D. Sperlich. 1978. Allozyme and inversion polymorphism in a central European population of Drosophila subobscura. Genetica 48: 207–214.

    Article  Google Scholar 

  • Prakash, S. 1977a. Genetic divergence in closely related sibling species Drosophila pseudoobscura, Drosophila persimilis and Drosophila miranda. Evolution 31: 14–23.

    Article  Google Scholar 

  • Prakash, S. 1977b. Allelic variants of Xanthine dehydrogenase locus affecting enzyme activity in Drosophila pseudoobscura. Genetics 87: 159–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash, S., and R.C. Lewontin. 1968. A molecular approach to the study of genic heterozygosity in natural populations. III. Direct evidence of co-adaptation in gene arrangements of Drosophila. Proceedings of National Academic of Sciences 59: 398–405.

    Article  CAS  Google Scholar 

  • Prakash, S., and R.B. Merritt. 1972. Direct evidence of genic differentiation between sex-ratio and standard gene arrangements of X chromosome in Drosophila pseudoobscura. Genetics 72: 169–175.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash, S., R.C. Levontin, and J.L. Hubby. 1969. A molecular approach to the study of genic heterozygosity in natural populations. IV. Patterns of genic variation in central, marginal and isolated populations of Drosophila pseudoobscura. Genetics 61: 841–858.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prout, T., and J.S.F. Barker. 1993. F-statistics in Drosophila buzzatii: Selection, population size and inbreeding. Genetics 134: 369–375.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson, R.H., and F.M. Johnson. 1967. Isozyme variability in species of genus Drosophila. II. A multiple allelic isozyme system in Drosophila busckii: A stable polymorphism system. Biochemical Genetics 1: 73–79.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, C., R. Piccinali, E. Levy, and E. Hasson. 2000. Contrasting population genetic structures using allozymes and the inversion polymorphism in Drosophila buzzatii. Journal of Evolutionary Biology 13: 976–984.

    Article  CAS  Google Scholar 

  • Rodriguez, C., R. Piccinali, E. Levy, and E. Hasson. 2001. Gametic association between inversion and allozyme polymorphism in Drosophila buzzatii. The Journal of Heredity 92: 382–391.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Trelles, F. 2003. Seasonal cycles of allozyme-by-chromosomal-inversion gametic disequilibrium in Drosophila subobscura. Evolution 57: 839–848.

    Article  CAS  PubMed  Google Scholar 

  • Sabath, M.D. 1974. Niche breadth and genetic variability in sympatric natural population of drosophilid flies. American Naturalist 108: 533–540.

    Article  Google Scholar 

  • Santos, M., A. Ruiz, and A. Fontdevila. 1989. The evolutionary history of Drosophila buzzatii, XIII: Random differentiation as a partial explanation of the observed chromosomal variation in a structured natural population. American Naturalist 133: 183–197.

    Article  Google Scholar 

  • Singh, A.K., S. Kumar, and Bhumika. 2013. Random genetic drift affecting Alcohol dehydrogenase polymorphism in laboratory populations of Drosophila ananassae. Journal of Scientific Research 57: 104–108.

    CAS  Google Scholar 

  • Singh, B.N. 2010. Drosophila ananassae: A good model species for genetical, behavioural and evolutionary studies. Indian Journal of Experimental Biology 48: 333–345.

    PubMed  Google Scholar 

  • Singh, B.N. 2013. Genetic polymorphisms in Drosophila. Current Science 105: 461–469.

    Google Scholar 

  • Singh, R.S., and L.R. Rhomberg. 1987. A comprehensive study of genic variation in natural populations of Drosophila melanogaster. II. Estimates of heterozygosity and patterns of geographic differentiation. Genetics 117: 255–271.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, R.S., D.A. Hickey, and J.R. David. 1982. Genetic differentiation between geographically distant populations of Drosophila melanogaster. Genetics 101: 235–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, R.S., R.C. Lewontin, and A. Felton. 1976. Genetic heterogeneity within electrophoretic ‘alleles’ of Xanthine dehydrogenase in Drosophila pseudoobscura. Genetics 84: 509–529.

    Google Scholar 

  • Sperlich, D., and W. Pinsker. 1980. Distribution pattern of chromosomal polymorphism in natural populations of Drosophila. Atti dell’Associazione genetica italiana 25: 47–60.

    Google Scholar 

  • Stalker, H.D. 1976. Chromosome studies in wild populations of Drosophila melanogaster. Genetics 82: 323–347.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stalker, H.D. 1980. Chromosome studies in wild populations of Drosophila melanogaster. II. Relationship of inversion frequencies to latitude, season, wing loading and flight activity. Genetics 95: 211–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sved, J.A., T.E. Reed, and W.F. Bodmer. 1967. The number of balanced polymorphism that can be maintained in a natural population. Genetics 55: 459–481.

    Google Scholar 

  • Thomas, R., and J.S.F. Barker. 1990. Breeding structure of natural populations of Drosophila buzzatii: Effects of the distribution of larval substrates. Heredity 64: 355–365.

    Article  PubMed  Google Scholar 

  • Umina, P.A., A.R. Weeks, M.R. Kearney, S.W. McKechnie, and A.A. Hoffmann. 2005. A rapid shift in a classic clinal pattern in Drosophila reflecting climate change. Science 308: 691–693.

    Article  CAS  PubMed  Google Scholar 

  • Van Delden, W. 1982. The Alcohol dehydrogenase polymorphism in Drosophila melanogaster: Selection at an enzyme locus. Evolutionary Biology 15: 187–222.

    Article  Google Scholar 

  • Voelker, R.A., T. Mukai, and F.M. Johnson. 1977. Genetic variation in populations of Drosophila melanogaster from the western United States. Genetics 47: 143–148.

    Google Scholar 

  • Voelkar, R.A., C.H. Langley, A.J. Leigh-Brown, S. Ohnishi, B. Kickson, E. Montgomeri, and S.C. Smith. 1980. Enzyme null alleles in natural populations of Drosophila melanogaster. Proceedings of National Academic of Sciences 77: 1091–1095.

    Article  Google Scholar 

  • Watanabe, T.K., and T. Watanabe. 1977. Enzyme and chromosomal polymorphism in Japanese natural populations of Drosophila melanogaster. Genetics 85: 319–329.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcox, D.R., and S. Prakash. 1980. Variation in biochemical properties of allozymes of Xanthine dehydrogenase in Drosophila pseudoobscura. Genetics 96: 927–938.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, S.Y., L.L. Wheeler, and I.R. Bock. 1972. Isozyme variations and phylogenetic relationships in the Drosophila bipectinata species complex. University Texas Publications 7213: 213–227.

    Google Scholar 

  • Yoshimaru, H., and T. Mukai. 1979. Lack of experimental evidence for frequency dependent selection at the Alcohol dehydrgenase locus in Drosophila melanogaster. Proceedings of National Academic of Sciences 76: 876–878.

    Article  CAS  Google Scholar 

  • Zapata, C., and G. Alvarez. 1992. The detection of gametic disequilibrium between allozyme loci in natural populations of Drosophila. Evolution 46: 1900–1917.

    Article  Google Scholar 

  • Zouros, E., C.B. Krimbas, S. Tsakas, and M. Loukas. 1974. Genic versus chromosomal variation in natural populations of Drosophila subobscura. Genetics 78: 1223–1244.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are thankful to University Grants Commission, New Delhi for providing financial support in the form of major research project to AKS and research fellowship in the form of project fellow to SK. We thank two anonymous reviewers for their very appropriate corrections and suggestions in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Singh, A.K. Allozyme polymorphism in Drosophila . Proc Zool Soc 69, 22–31 (2016). https://doi.org/10.1007/s12595-014-0126-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-014-0126-3

Keywords

Navigation