Skip to main content

Multilocus Systems in Evolution

  • Chapter
Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 11))

Abstract

Population studies of genetic variation and microevolution are classically discussed in terms of changes in gene frequencies and the maintenance of polymorphic loci that can be identified by Mendelian analyses. In recent years, however, a great deal of attention has been given to the evolutionary dynamics and polymorphisms of interacting and linked loci (e.g., Clegg et al., 1972; Lewontin, 1974; Karlin, 1976). The special properties of multilocus systems, namely, gene interaction and linkage, were first briefly considered in theory by Fisher (1930) and Wright (1932). Fisher discussed in particular the role of modifiers in the evolution of dominance and clearly recognized the importance of linkage in the evolution of interacting polymorphisms. Wright proposed an intermediate optimum model in which natural selection favors intermediate phenotypes over the extremes for a continuous metric trait and emphasized the role of linkage in the makeup of gametic arrays.

In general, relative selective values can properly be assigned only to genetic systems as wholes, since individual mutations that are favorable in some combinations are almost certain to be unfavorable in others. Evolution depends on the fitting together of a harmonious system of gene effects.

Wright, 1964

Epistatic selection and balanced polymorphism, both of which are probably common, tend to produce supergenes, which are thus a major feature of evolution; other forces prevent this leading to total condensation of the genetic material.

Turner, 1967a

The fitness at a single locus ripped from its interactive context is about as relevant to real problems of evolutionary genetics as the study of the psychology of individuals isolated from their social context is to an understanding of man’s sociopolitical evolution. In both cases context and interaction are not simply second-order effects to be superimposed on a primary monadic analysis. Context and interaction are of the essence.

Lewontin, 1974

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard, R. W., and Kahler, A. L., 1972, Patterns of molecular variation in plant populations, Proc. Sixth Berkeley Symp. Math. Stat. Probab. 5: 237–254.

    Google Scholar 

  • Allard, R. W., and Kahler, A. L., 1974, Multilocus genetic organization and morphogenesis, Brookhaven Symp. Biol. 225: 239–343.

    Google Scholar 

  • Allard, R. W., Babbel, G. R., Clegg, M. T., and Kahler, A. L., 1972, Evidence for coadaptation in Avena barbata, Proc. Nat. Acad. Sci. USA 69: 3043–3048.

    PubMed  CAS  Google Scholar 

  • Anderson, W. W., 1968, Further evidence for coadaptation in crosses between geographic populations of Drosophila pseudoobscura, Genet. Res. 12: 317–330.

    PubMed  CAS  Google Scholar 

  • Baker, W. K., 1975, Linkage disequilibrium over space and time in natural populations of Drosophila montana, Proc. Nat. Acad. Sci. USA 72: 4095–4099.

    PubMed  CAS  Google Scholar 

  • Bal, B. S., Suneson, C. A., and Ramage, R. T., 1959, Genetic shift during 30 generations of natural selection in barley, Agron. J. 51: 555–557.

    Google Scholar 

  • Bantock, C. R., and Noble, K., 1973, Variation with altitude and habitat in Cepaea hortensis (Müll.), Zool.J. Linn. Soc. 53: 237–252.

    Google Scholar 

  • Barker, J. S. F., 1977, Population genetics of a sex-linked locus in Drosophila melanogaster. I. Linkage disequilibrium and associative overdominance, Hereditas 85: 169–198.

    PubMed  CAS  Google Scholar 

  • Bennett, J. H., 1965, Estimation of the frequencies of linked gene pairs in random mating populations, Am. J. Hum. Genet. 17: 51–53.

    PubMed  CAS  Google Scholar 

  • Bennett, T. H., 1954, On the theory of random mating, Ann. Eugen. 18: 311–317.

    PubMed  CAS  Google Scholar 

  • Birley, A. J., 1974, Multi-locus polymorphism and selection in a population of Drosophila melanogaster. I. Linkage disequilibrium on chromosome III. Heredity 32: 122–127.

    PubMed  CAS  Google Scholar 

  • Bodmer, W. F., 1975, Gene duplication and coadaptation, in: Population Genetics and Ecology ( S. Karlin, and E. Nevo, eds.), p. 824, Academic Press, New York.

    Google Scholar 

  • Bodmer, W. F., and Felsenstein, J., 1967, Linkage and selection: Theoretical analysis of the deterministic two-locus random mating model, Genetics 57: 237–265.

    PubMed  CAS  Google Scholar 

  • Bodmer, W. F., and Parsons, P. A., 1962, Linkage and recombination in evolution, Adv. Genet. 11: 1–99.

    Google Scholar 

  • Breese, E. L., and Mather, K., 1960, The organization of polygenic activity within a chromosome in Drosophila. II. Viability, Heredity 14: 375–399.

    Google Scholar 

  • Brncic, D., 1954, Heterosis and the integration of the genotype in geographical populations of Drosophila pseudoobscura, Genetics 39: 77–88.

    PubMed  CAS  Google Scholar 

  • Brncic, D., 1961, Non-random association of inversions in Drosophila pavani, Genetics 45: 401–406.

    Google Scholar 

  • Broadhead, R. S., and Kidwell, J. F., 1975, A note on the distribution of the recombination fraction in Drosophila melanogaster, J. Hered. 66: 309–310.

    PubMed  CAS  Google Scholar 

  • Brown, A. D. H., 1975, Sample sizes required to detect linkage disequilibrium between two or three loci, Theor. Popul. Biol. 8:184–201

    PubMed  CAS  Google Scholar 

  • Brown, A. D. H., 1978, Isozymes, plant population genetic structure and genetic conservation, Theor. Appl. Genet. (in press).

    Google Scholar 

  • Brown, A., Nevo, E., and Zohary, D., 1977, Association of alleles at esterase loci in wild barley Hordeum spontaneum L, Nature 268: 430–431.

    Google Scholar 

  • Bundgaard, J., and Christiansen, F. B., 1972, Dynamics of polymorphisme: I. Selection components in an experimental population of Drosophila melanogaster, Genetics 71: 439–460.

    PubMed  CAS  Google Scholar 

  • Cain, A. J., and Currey, J. D., 1963, Area effects in Cepaea, Philos. Trans. R. Soc. London, Ser. B 246: 1–181.

    Google Scholar 

  • Cannon, G. B., 1963, The effects of natural selection on linkage disequilibrium and relative fitness in experimental populations of Drosophila melanogaster, Genetics 48: 1201–1216.

    PubMed  CAS  Google Scholar 

  • Carson, H. L., 1958, Increase in fitness in experimental populations resulting from heterosis, Proc. Nat. Acad. Sci. USA 44: 1136–1141.

    PubMed  CAS  Google Scholar 

  • Carter, M. A., 1968, Studies in Cepaea. II. Area effects and visual selection in Cepaea nemoralis (L.) and Cepaea hortensia, Philos. Trans. R. Soc. London, Ser. B 253: 397–446.

    Google Scholar 

  • Cavalli-Sforza, L. L., and Bodmer, W. F., 1971, The Genetics of Human Populations, W. H. Freeman, San Francisco.

    Google Scholar 

  • Charlesworth, B., and Charlesworth, D., 1973, A study of linkage disequilibrium in populations of Drosophila melanogaster, Genetics 73: 351–359.

    PubMed  CAS  Google Scholar 

  • Chigusa, S., and Mukai, T., 1964, Linkage disequilibrium and heterosis in experimental populations of Drosophila melanogaster with particular reference to the sepia gene, Jpn. J. Genet. 39: 289–305.

    Google Scholar 

  • Chinnici, J. P., 1971a, Modification of recombination frequency in Drosophila. I. Selection for increased and decreased crossing over, Genetics 69: 71–83.

    PubMed  CAS  Google Scholar 

  • Chinnici, J. P., 1971b, Modification of recombination frequency in Drosophila. II. The poly-genic control of crossing over, Genetics 69: 85–96.

    PubMed  CAS  Google Scholar 

  • Christiansen, F. B., and Feldman, M. W., 1975a, Selection in complex genetic systems. IV. Multiple alleles and interaction between two loci, J. Math. Biol. 2: 179–204.

    Google Scholar 

  • Christiansen, F. B., and Feldman, M. W., 1975b, Subdivided populations: A review of the one-and two-locus deterministic theory, Theor. Popul. Biol. 7: 13–38.

    PubMed  CAS  Google Scholar 

  • Clarke, B., 1974, Causes of genetic variation, Science 186: 524–525.

    Google Scholar 

  • Clarke, B., Diver, C., and Murray, J., 1968, Studies on Cepaea. VI. The spatial and temporal distribution of phenotypes in a colony of Cepaea nemoralis (L.), Proc R. Soc. London, Ser. B 253: 521–548.

    Google Scholar 

  • Clarke, C. A., Sheppard, P. M., and Thornton, I. W. B., 1968, The genetics of the mimetic butterfly Papilio memnon, Philos. Trans. R. Soc. London, Ser. B 254: 37–89.

    Google Scholar 

  • Clausen, J., and Hiesey, W. M., 1958, Experimental studies on the nature of species. IV. Genetic structure of ecological races, Carnegie Inst. Washington Publ. 615: 1–312.

    Google Scholar 

  • Clegg, M. T., 1978, Dynamics of correlated genetic systems. II. Simulation studies of chromosomal segments under selection. Theor. Popul. Biol. 13: 1–23.

    PubMed  CAS  Google Scholar 

  • Clegg, M. T., Allard, R. W., and Kahler, A. L., 1972, Is the gene the unit of selection? Evidence from two experimental plant populations. Proc. Nat. Acad. Sci. USA 69: 2474–2478.

    PubMed  CAS  Google Scholar 

  • Clegg, M. T., Kidwell, J. F., Kidwell, M. G., and Daniel, N. J., 1976, Dynamics of correlated genetic systems. I. Selection in the region of the glued locus of Drosophila melanogaster, Genetics 83: 793–810.

    PubMed  CAS  Google Scholar 

  • Cockerham, C. C., and Weir, B. S., 1977, Digenic descent measures for’ finite populations, Genet. Res. 30: 121–147.

    Google Scholar 

  • Crow, J. F., 1948, Alternative hypotheses of hybrid vigor, Genetics 33: 477–487.

    PubMed  CAS  Google Scholar 

  • Crow, J. F., and Kimura, M., 1970, An Introduction to Population Genetics Theory, Harper and Row, New York.

    Google Scholar 

  • Crowe, L. K., 1964, The evolution of outbreeding in plants, Heredity 19: 435–457.

    Google Scholar 

  • Darlington, C. D., 1956, Chromosome Botany and the Origin of Cultivated Plants, Allen and Unwin, London.

    Google Scholar 

  • Darlington, C. D., and Mather, K., 1949, The Elements of Genetics, Allen and Unwin, London.

    Google Scholar 

  • Darwin, C., 1876, The Effects of Cross-and Self-fertilization in the Vegetable Kingdom, Murray, London, 482 pp.

    Google Scholar 

  • Dewees, A. A., 1970, Two-way selection for recombination rates in Tribolium castaneum, Genetics 64: 216–217.

    Google Scholar 

  • Dickinson, H., and Antonovics, J., 1973, Theoretical considerations of sympatric divergence, Am. Nat. 107: 256–274.

    Google Scholar 

  • Dobzhansky, T., 1949, Observations and experiments on natural selection in Drosophila (Proc. Eighth Internat. Congr. Genet., 1948), Hereditas (suppl. vol.), pp. 210–224.

    Google Scholar 

  • Dobzhansky, T., 1950, Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura, Genetics 35: 288–302.

    PubMed  CAS  Google Scholar 

  • Dobzhansky, T., 1955, A review of some fundamental concepts and problems of population genetics, Cold Spring Harbor Symp. Quant. Biol. 20: 1–15.

    PubMed  CAS  Google Scholar 

  • Dobzhansky, T., 1970, Genetics of the Evolutionary Process, Columbia University Press, New York.

    Google Scholar 

  • Dobzhansky, T., and Epling, C., 1948, The suppression of crossing over in inversion heterozygutes of Drosophila pseudoobscura, Genetics 34: 137–141.

    CAS  Google Scholar 

  • Dowrick, V. P. J., 1956, Heterostyly and homostyly in Primula obconica, Heredity 10: 219–236.

    Google Scholar 

  • Elandt-Johnson, R. C., 1971, Probability Models and Statistical Methods in Genetics, Wiley, New York.

    Google Scholar 

  • Elston, R. C., and Glassman, E., 1967, An approach to the problem of whether clustering of functionally related genes occur in higher organisms, Genet. Res. 9: 141–147.

    Google Scholar 

  • Endler, J. A., 1977, Geographic Variation, Speciation, and Clines, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Ewens, W. J., 1969, Population Genetics, Methuen and Co., London.

    Google Scholar 

  • Feinberg, S. E., 1970, The analysis of multidimensional contingency tables, Ecology 51: 419–433.

    Google Scholar 

  • Feldman, M. W., and Christiansen, F. B., 1975, The effect of population subdivision on two loci without selection, Genet. Res. 24: 151–162.

    Google Scholar 

  • Feldman, M. W., and Krakauer, J., 1976, Genetic modification and modifier polymorphisms, in: Population Genetics and Ecology ( S. Karlin and E. Nevo, eds.), pp. 547–583, Academic Press, New York.

    Google Scholar 

  • Feldman, M. W., Franklin, I., and Thomson, G., 1974, Selection in complex genetic systems. I. The symmetric equilibria of the three-locus symmetric viability model, Genetics 76: 135–162.

    PubMed  CAS  Google Scholar 

  • Feldman, M. W., Lewontin, R. C., Franklin, I. R., and Christiansen, F. B., 1975, Selection in complex genetic systems. III. An effect of allele multiplicity with two loci, Genetics 79: 333–347.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J., 1965, The effect of linkage on directional selection, Genetics 52: 349–363.

    PubMed  CAS  Google Scholar 

  • Ferrara, G. B., 1977, HLA System—New Aspects, North-Holland, Amsterdam.

    Google Scholar 

  • Fisher, R. A., 1930, The Genetical Theory of Natural Selection, Clarendon Press, Oxford (rev. ed., 1958, Dover, New York ).

    Google Scholar 

  • Fisher, R. A., 1965, The Theory of Inbreeding, 2nd ed., Oliver and Boyd, London.

    Google Scholar 

  • Fontevila, A., Mendez, J., Ayala, F. J., and McDonald, J., 1975, Maintenance of allozyme polymorphisms in experimental populations of Drosophila, Nature 255: 149–151.

    Google Scholar 

  • Ford, E. B., 1971, Ecological Genetics, Wiley, New York.

    Google Scholar 

  • Ford, E. B., 1974, Supergenes: Are these ecological operons? Brookhaven Symp. Biol. 25: 297–308.

    Google Scholar 

  • Franklin, I. R., and Feldman, M. W., 1977, Two loci with two alleles: Linkage equilibrium and linkage disequilibrium can be simultaneously stable, Theor. Popul. Biol. 12: 95–113.

    PubMed  CAS  Google Scholar 

  • Franklin, I. R., and Lewontin, R. C., 1970, Is the gene the unit of selection? Genetics 65: 707–734.

    PubMed  CAS  Google Scholar 

  • Frydenberg, O., 1963, Population studies of a lethal mutant in Drosophila melanogaster. I. Behavior in populations with discrete generations, Hereditas 50: 89–116.

    Google Scholar 

  • Geiringer, H., 1944, On the probability theory of linkage in Mendelian heredity, Ann. Math. Stat. 15: 25–57.

    Google Scholar 

  • Gillespie, J., 1977, Multilocus behavior in random environments. II. Linkage disequilibrium in an additive model, Genetics 87: 569–579.

    PubMed  CAS  Google Scholar 

  • Gillespie, J., and Langley, C., 1976, Multilocus behavior in random environments. I. Random Levene models, Genetics 82: 123–137.

    PubMed  CAS  Google Scholar 

  • Goldschmidt, R. B., 1940, The Material Basis of Evolution, Yale University Press, New Haven, Conn.

    Google Scholar 

  • Goodhart, C. B., 1973, A sixteen-year survey of Cepaea on the Hundred-Foot Bank, Malacol. Int. J. Malacol. 14: 327–331.

    Google Scholar 

  • Gottlieb, L. D., 1976, Biochemical consequences of speciation in plants, in: Molelcular Evolution, F. J. Ayala, ed.), pp. 123–140, Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Grant, V., 1964, The Architecture of Germplasm, John Wiley, New York.

    Google Scholar 

  • Grant, V., 1971, Plant Speciation, Columbia University Press, New York.

    Google Scholar 

  • Haigh, J., and Maynard Smith, J., 1976, The hitch-hiking effect—a reply, Genet. Res. 27: 85–87.

    PubMed  CAS  Google Scholar 

  • Haldane, J. B. S., 1956, The estimation of viabilities, J. Genet. 54: 294–296.

    Google Scholar 

  • Haldane, J. B. S., 1957, The conditions for co-adaptation in polymorphisms for inversions, J. Genet. 55: 218–225.

    Google Scholar 

  • Hammerberg, C., Klein, J., Artzi, K., and Bennett, D., 1976, Histocompatibility-2 system in wild mice, Transplantation 21: 199–212.

    PubMed  CAS  Google Scholar 

  • Hamrick, J. L., and Allard, R. W., 1972, Microgeographical variation in allozyme frequencies in Avena barbata, Proc. Nat. Acad. Sci. USA 69: 2100–2104.

    PubMed  CAS  Google Scholar 

  • Hamrick, J. L., and Holden, L. R., 1978, The influence of microhabitat heterogeneity on gene frequency distribution and gametic phase disequilibrium in Avena barbata. Evolution (in press).

    Google Scholar 

  • Hanson, W. D., 1959a, Theoretical distribution of the initial linkage block lengths intact in the gametes of a population intermated for N generations, Genetics 44: 839–846.

    PubMed  CAS  Google Scholar 

  • Hanson, W. D., 1959b, The breakup of initial linkage blocks under selected mating systems, Genetics 44: 857–868.

    PubMed  CAS  Google Scholar 

  • Harding, J., and Allard, R. W., 1969, Population studies in predominantly self-pollinated species. XII. Interactions between loci affecting fitness in a population of Phaseolus lunatus, Genetics 61: 721–736.

    PubMed  CAS  Google Scholar 

  • Hartl, D. L., 1975, Segregation distortion in natural and artificial populations of Drosophila melanogaster, in: Gamete Competition in Plants and Animals ( D. L. Mulcahy, ed.), North-Holland, Amsterdam.

    Google Scholar 

  • Hartl, D. L., 1977, Mechanism of a case of genetic coadaptation in populations of Drosophila melanogaster, Proc. Nat. Acad. Sci. USA 74: 324–328.

    PubMed  CAS  Google Scholar 

  • Hebert, P. D. N., 1974a, Enzyme variability in natural populations of Daphnia magna. II. Genotypic frequencies in permanent populations, Genetics 77: 323–334.

    PubMed  CAS  Google Scholar 

  • Hebert, P. D. N., Enzyme variability in natural populations of Daphnia magna. III. Genotypic frequencies in intermittent populations, Genetics 77: 335–341.

    Google Scholar 

  • Hebert, P. D. N., and Ward, R. D., 1976, Enzyme variability in natuaral populations of Daphnia magna. IV. Ecological differentiation and frequency changes of genotypes at Audley End, Heredity 36: 331–334.

    PubMed  CAS  Google Scholar 

  • Hedrick, P. W., 1976, Simulation of X-linked selection in Drosophila, Genetics 83: 551–571.

    PubMed  CAS  Google Scholar 

  • Hedrick, P. W., and Comstock, R. E., 1968, Role of linkage in gene frequency change of coat color alleles in mice, Genetics 58: 297–303.

    PubMed  CAS  Google Scholar 

  • Hedrick, P. W., and Holden, L. R., 1978, Hitchhiking: A comparison of linkage and partial selfing, manuscript.

    Google Scholar 

  • Hedrick, P. W., Ginevan, M. E., and Ewing, E. P., 1976, Genetic polymorphism in heterogeneous environments, Ann. Rev. Ecol. Syst. 7: 1–32.

    Google Scholar 

  • Hill, W. G., 1974, Estimation of linkage disequilibrium in randomly mating populations, Heredity 33: 229–239.

    PubMed  CAS  Google Scholar 

  • Hill, W. G., 1975, Tests for association of gene frequencies at several loci in random mating diploid populations, Biometrics 31: 881–888.

    PubMed  CAS  Google Scholar 

  • Hill, W. G., 1976, Non-random association of neutral linked genes in finite populations, in: Population Genetics and Ecology ( S. Karlin and E. Nevo, eds.), pp. 339–376, Academic Press, New York.

    Google Scholar 

  • Hill, W. G., 1977, Correlation of gene frequencies between neutral linked genes in finite populations, Theor. Popul. Biol. 11: 239–248.

    PubMed  CAS  Google Scholar 

  • Hill, W. G., and Robertson, A., 1968, Linkage disequilibrium in finite populations, Theor. Appl. Genet. 38: 226–231.

    Google Scholar 

  • Holden, L. R., 1978, New properties of the two-locus, partial selfing model with selection, Genetics (in press).

    Google Scholar 

  • Ishii, K., and Charlesworth, B., 1977, Associations between allozyme loci and gene arrangements due to hitch-hiking effects of new inversions, Genet. Res. 30: 93–106.

    Google Scholar 

  • Jain, S. K., 1969, Epistasis and linkage in inbreeding populations, Jpn. J. Genet. 44 (suppl.): 135–143.

    Google Scholar 

  • Jain, S. K., 1971, Gene pools, variation and selection, in: Barley Genetics, Vol. 2 ( R. A. Nilan, ed.), pp. 422–429, Washington State University Press, Pullman.

    Google Scholar 

  • Jain, S. K., and Allard, R. W., 1966, The effects of linkage, epistasis and inbreeding on population changes under selection, Genetics 53: 633–659.

    PubMed  CAS  Google Scholar 

  • Jain, S. K., and Suneson, C. A., 1964, Population studies in predominately self-pollinated species. VII. Survival of a male-sterility gene in relation to heterozygosis in barley populations, Genetics 50: 905–913.

    PubMed  CAS  Google Scholar 

  • Jain, S. K., and Suneson, C. A., 1966, Increased recombination and selection in barley popula- tions carrying a male-sterility factor. I. Quantitative variability, Genetics 54: 1215–1224.

    PubMed  CAS  Google Scholar 

  • Jennings, H. S., 1917, The numerical results of diverse systems of breeding, with respect to two pairs of characters, linked or independent, with special relation to the effects of linkage. Genetics 2: 97–154.

    PubMed  CAS  Google Scholar 

  • Johnson, M. S., 1976, Allozymes and area effects in Cepala memoralis on the western Berkshire Downs, Heredity 36: 105–121.

    Google Scholar 

  • Johnson, W. W., 1974, Coadaptation and recessive lethal content in DDT-resistant populations of Drosophila melanogaster, Evolution 28: 251–258.

    Google Scholar 

  • Jones, J. S., and Yamazaki, T., 1974, Genetic background and the fitness of allozymes, Genetics 78: 1185–1189.

    PubMed  CAS  Google Scholar 

  • Jones, J. S., Leith, B. H., and Rawlings, P., 1977, Polymorphism in Cepaea: A problem with two many solutions? Annu. Rev. Ecol. Syst. 8: 109–143.

    Google Scholar 

  • Kahler, A. L., and Allard, R. W., 1970, Genetics of isozyme variants in barley. I. Esterases, Crop Sci. 10: 444–448.

    CAS  Google Scholar 

  • Karlin, S., 1969, Equilibrium Behavior of Population Genetics Models with Non-random Mating, Gordon and Breach, London.

    Google Scholar 

  • Karlin, S., 1975, General two-locus selection models: Some objectives, results and interpretations, Theor. Popul. Biol. 7: 364–398.

    PubMed  CAS  Google Scholar 

  • Karlin, S., 1976, Aspects of multi-locus problems, in: Population Genetics and Ecology ( S. Karlin, and E. Nevo, eds.), pp. 829–832, Academic Press, New York.

    Google Scholar 

  • Karlin, S., and Carmelli, D., 1975, Numerical studies on two-loci selection models with general viabilities, Theor. Popul. Biol. 7: 399–421.

    PubMed  CAS  Google Scholar 

  • Karlin, S., and Feldman, M. W., 1969, Linkage and selection: New equilibrium properties of the two-locus symmetric viability model, Proc. Nat. Acad. Sci. USA 62: 70–74.

    PubMed  CAS  Google Scholar 

  • Karlin, S., and Feldman, M. W., 1970, Linkage and selection: Two-locus symmetric viability model, Theor. Popul. Biol. 1: 39–71.

    PubMed  CAS  Google Scholar 

  • Karlin, S., and Lieberman, U., 1976, A phenotypic symmetric selection model for three loci, two-alleles: The case of tight linkage, Theor. Popul. Biol. 10: 334–364.

    PubMed  CAS  Google Scholar 

  • Karlin, S., and McGregor, J., 1972, Polymorhisms for genetic and ecological systems with weak coupling, Theor. Popul. Biol. 3: 210–238.

    PubMed  CAS  Google Scholar 

  • Karlin, S.. and McGregor, J., 1973, Equilibria for genetic systems with weak interactions, Proc. Sixth Berkeley Symp. Math. Stat. Probab. 4: 79–87.

    Google Scholar 

  • Karlin, S., and McGregor, J., 1974, Towards a theory of the evolution of modifier genes. Theor. Popul. Biol. 5: 59–103.

    PubMed  CAS  Google Scholar 

  • Kidwell, M. G., 1972a, Genetic change of recombination value in Drosophila melanogaster. I. Artificial selection for high and low recombination and some properties of recombination-modifying genes, Genetics 70: 419–432.

    PubMed  CAS  Google Scholar 

  • Kidwell, M. G., 1972b, Genetic change of recombination value in Drosophila melanogaster. II. Simulated natural selection, Genetics 70: 433–443.

    PubMed  CAS  Google Scholar 

  • Kimura, M., 1956, A model of a genetic system which leads to closer linkage by natural selection, Evolution 10: 278–287.

    Google Scholar 

  • Kimura, M., 1965, Attainment of quasilinkage equilibrium when gene frequencies are changing by natural selection, Genetics 52: 875–890.

    PubMed  CAS  Google Scholar 

  • Kimura, M., and Ohta, T., 1971, Theoretical Aspects of Population Genetics, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • King, J. C., 1955, Evidence for the integration of the gene pool from studies of DDT resistance in Drosophila, Cold Spring Harbor Symp. Quant. Biol. 20: 311–317.

    PubMed  CAS  Google Scholar 

  • King, J. C., and Somme, L., 1958, Chromosomal analysis of the genetic factors for resistance to DDT in two resistant lines of Drosophila melanogaster, Genetics 43: 577–593.

    PubMed  CAS  Google Scholar 

  • King, J. L., and Ohta, T., 1975, Polyallelic mutational equilibria, Genetics 79: 681–691.

    PubMed  CAS  Google Scholar 

  • Kojima, K., 1959, Role of epistasis and overdominance in stability of equilibria with selection, Proc. Nat. Acad. Sci. USA 45: 984–989.

    PubMed  CAS  Google Scholar 

  • Kojima, K., and Schaffer, H. E., 1967, Survival processes of linked mutant genes, Evolution 21: 518–531.

    Google Scholar 

  • Kojima, K., Gillespie, J., and Tobari, Y. N., 1970, A profile of Drosophila species enzymes assayed by electrophoresis. I. Number of alleles, heterozygosities, and linkage disequilibrium in glucose-metabolizing systems and some other enzymes, Biochem. Genet. 4: 627–637.

    PubMed  CAS  Google Scholar 

  • Kosuda, K., 1971, Synergistic interaction between second and third chromosomes on viability of Drosophila melanogaster, Jpn. J. Genet. 46: 41–52.

    Google Scholar 

  • Lamm, L. U., and Kristensen, T., 1977, Formal genetics of the HLA system, in: HLA System—New Aspects ( G. B. Gerrara, ed.), pp. 1–20, North-Holland, Amsterdam.

    Google Scholar 

  • Landner, L., 1974, Genetic control of recombination in Neurospora crassa. III. Selection for increased and decreased recombination frequency, Hereditas 78: 185–200.

    PubMed  CAS  Google Scholar 

  • Langley, C. H., 1977, Nonrandom associations between allozymes in natural populations of Drosophila melanogaster, in: Measuring Selection in Natural Populations ( F. B. Christiansen and T. M. Fenchel, eds.), pp. 265–273, Springer-Verlag, Berlin.

    Google Scholar 

  • Langley, C. H., and Crow, J. F., 1974, The direction of linkage disequilibrium, Genetics 78: 937–941.

    PubMed  CAS  Google Scholar 

  • Langley, C. H., Tobari, Y. N., and Kojima, K., 1974, Linkage disequilibrium in natural populations of Drosophila melanogaster, Genetics 78: 921–936.

    PubMed  CAS  Google Scholar 

  • Langley, C. H., Ito, K., and Voelker, R. A., 1977, Linkage disequilibrium in natural populations of Drosophila melanogaster. Seasonal variation, Genetics 86: 447–454.

    PubMed  CAS  Google Scholar 

  • Lee, B. T. O., and Parsons, P. A., 1968, Selection, prediction, and response, Biol. Rev. 43: 139–174.

    PubMed  CAS  Google Scholar 

  • Levin, D. A., 1975, Genetic correlates of translocation heterozygosity in plants, Bio Science 25: 724–728.

    Google Scholar 

  • Levitan, M., 1958, Non-random associations in inversions, Cold Spring Harbor Symp. Quant. Biol. 23: 251–268.

    PubMed  CAS  Google Scholar 

  • Levitan, M., 1973a, Studies of linkage in populations. VI. Periodic selection for X-chromosome gene arrangement combinations, Evolution 27: 215–225.

    Google Scholar 

  • Levitan, M., 1973b, Studies of linkage in populations. VII. Temporal variation and X-chromosomal linkage disequilibriums, Evolution 27: 476–485.

    Google Scholar 

  • Levitan, M., and Salzano, F. M., 1959, Studies of linkage in populations. III. An association of linked inversions in Drosophila guaramunu, Heredity 13: 243–248.

    Google Scholar 

  • Levy, M., and Winternheimer, P. L., 1977, Allozyme linkage disequilibria among chromosome complexes in the permanent translocation heterozygote Oenothera biennis. Evolution 31: 465–476.

    Google Scholar 

  • Lewis, E. B., 1966, Genes and gene complexes, in: Heritage from Mendel ( R. A. Brink and E. D. Styles, eds.), pp. 17–47, University of Wisconsin Press, Madison.

    Google Scholar 

  • Lewontin, R. C., 1964a, The interaction of selection and linkage. I. General considerations: heterotic models, Genetics 49: 49–67.

    PubMed  CAS  Google Scholar 

  • Lewontin, R. C., 1964b, The interaction of selection and linkage. II. Optimum models, Genetics 50: 757–782.

    PubMed  CAS  Google Scholar 

  • Lewontin, R. C., 1973, Population genetics, Annu. Rev. Genet. 7: 1–17.

    PubMed  CAS  Google Scholar 

  • Lewontin, R. C., 1974, The Genetic Basis of Evolutionary Change, Columbia University Press, New York.

    Google Scholar 

  • Lewontin, R. C., and Kojima, K., 1960, The evolutionary dynamics of complex polymorphisms, Evolution 14: 450–472.

    Google Scholar 

  • Lewontin, R. C., and White, M. J. D., 1960, Interaction between inversion polymorphisms of two chromosome pairs in the grasshopper Moraba scura, Evolution 14: 116–129.

    Google Scholar 

  • Li, W-H., and Nei, M., 1974, Stable linkage disequilibrium without epistasis in subdivided populations, Theor. Popul. Biol. 6: 173–183.

    PubMed  CAS  Google Scholar 

  • Loukas, M., and Krimbas, C. B., 1975, The genetics of Drosophila subobscura populations. V. A study of linkage disequilibrium in natural populations between genes and inversions of the E chromosome, Genetics 80: 331–347.

    PubMed  CAS  Google Scholar 

  • MacFarquhar, A. M., and Robertson, F. W., 1963, The lack of evidence for coadaptation in crosses between geographical races of Drosophila subobscura, Coll. Genet. Res. 4: 104–131.

    Google Scholar 

  • Maclntyre, R. J., and Wright, T. R. F., 1966, Responses of esterase 6 alleles of Drosophila melanogaster and D. simulans to selection in experimental populations, Genetics 53: 371–387.

    Google Scholar 

  • MacLean, N., 1976, Control of Gene Expression, Academic Press, New York.

    Google Scholar 

  • Mangelsdorf, P. C., 1974, Corn, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Markow, T. A., 1975, A genetic analysis of phototactic behavior in Drosophila melanogaster. I. Selection in the presence of inversions, Genetics 79: 527–534.

    PubMed  CAS  Google Scholar 

  • Martin, J., 1965, Interrelation of inversion systems in the midge Chironomus intertinctus. II. A non-random association of linked inversions, Genetics 52: 371–383.

    PubMed  CAS  Google Scholar 

  • Mather, K., 1943, Polygenic inheritance and natural selection, Biol. Rev. 18: 32–64.

    Google Scholar 

  • Mather, K., 1950, The genetical architecture of heterostyly in Primula sinensis, Evolution 4: 340–352.

    Google Scholar 

  • Mather, K., 1953, The genetical structure of populations, Symp. Soc. Exp. Biol. 7: 66–95.

    Google Scholar 

  • Mather, K., 1973. Genetical Structure of Populations, Chapman and Hall, London.

    Google Scholar 

  • Mather, K., and Jinks, J. L., 1971, Biometrical Genetics, 2nd ed., Chapman and Hall, London.

    Google Scholar 

  • Mather, W. B., 1963, Patterns of chromosomal polymorphism in Drosophila rubida, Am. Nat. 97: 59–63.

    Google Scholar 

  • Maynard Smith, J., 1976, What determines the rate of evolution? Am. Nat. 110: 331–338.

    Google Scholar 

  • Maynard Smith, J., and Haigh, J., 1974, The hitch-hiking effect of a favourable gene, Genet. Res. 23: 23–35.

    Google Scholar 

  • Mayr, E., 1963, Animal Species and Evolution, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • McDonald, J. F., and Ayala, F. J., 1978, Genetic and biochemical basis of enzyme activity variation in natural populations. I. Alcohol dehydrogenase in Drosophila melanogaster, Genetics 89: 371–388.

    PubMed  CAS  Google Scholar 

  • McMichael, A., and McDevitt, H., 1977, The association between the HLA system and disease, Prog. Med Genet. 2: 39–100.

    PubMed  CAS  Google Scholar 

  • McPhee, C. P., and Robertson, A., 1970, The effect of suppressing crossing-over on the response to selection in Drosophila melanogaster, Genet. Res. 16: 1–16.

    PubMed  CAS  Google Scholar 

  • Merrell, D. J., 1963, “Heterosis” in Drosophila, Evolution 17: 481–485.

    Google Scholar 

  • Miller, R. D., 1977, Genetic variability in the slender wild oat Avena barbata in California. Ph.D. thesis, University of California at Davis.

    Google Scholar 

  • Mitton, J. B., and Koehn, R. K., 1975, Genetic organization and adaptive response of allozymes to ecological variables in Fundulus heteroclitus, Genetics 79: 97–111.

    PubMed  CAS  Google Scholar 

  • Mitton, J. B., Koehn, R. K., and Prout, T., 1973, Population genetics of marine pelocypods. III. Epistasis between functionally related isoenzymes of Mytilus edulis. Genetics 73: 478–496.

    Google Scholar 

  • Mukai, T., and Voelker, R. A., 1977, The genetic structure of natural populations of Drosophila melanogaster. XIII. Further studies on linkage disequilibrium, Genetics 86: 175–185.

    PubMed  CAS  Google Scholar 

  • Mukai, T., Mettler, L. E., and Chigusa, S. I., 1971. Linkage disequilibrium in a local population of Drosophila melanogaster, Proc. Nat. Acad. Sci. USA 68: 1065–1069.

    PubMed  CAS  Google Scholar 

  • Mukai, T., Watanabe, T. K., and Yamaguchi, O., 1974. The genetic structure of natural populations of Drosophila melanogaster. XII. Linkage disequilibrium in a large local population, Genetics 77: 771–793.

    Google Scholar 

  • Murray, J., and Clarke, B., 1976a, Supergenes in polymorphic land snails. I. Partula taeniata, Heredity 37: 253–269.

    PubMed  CAS  Google Scholar 

  • Murray, J., and Clarke, B., 1976b, Supergenes in polymorphic land snails. II. Partula suturalis, Heredity 37: 271–282.

    PubMed  CAS  Google Scholar 

  • Nagylaki, T., 1974, Quasilinkage equilibrium and the evolution of two-locus systems, Proc. Nat. Acad. Sci. USA 71: 526–530.

    PubMed  CAS  Google Scholar 

  • Nagylaki, T., 1976, The evolution of one-and two-locus systems, Genetics 83: 583–600.

    PubMed  CAS  Google Scholar 

  • Nair, P. S., and Brncic, D., 1971, Allelic variation within identical chromosomal inversions, Am. Nat. 105: 291–294.

    Google Scholar 

  • Nei, M., 1975, Molecular Population Genetics and Evolution, North-Holland, Amsterdam.

    Google Scholar 

  • Nei, M., and Li, W.-H. 1973, Linkage disequilibrium in subdivided populations, Genetics 75: 213–219.

    PubMed  CAS  Google Scholar 

  • Nei, M., and Li, W.-H., 1975, Probability of identical monomorphism in related species, Genet. Res. 26: 31–43.

    PubMed  CAS  Google Scholar 

  • O’Brien, S. J., and Maclntyre, R. J., 1971, Transient linkage disequilibrium in Drosophila, Nature 230: 335–336.

    PubMed  Google Scholar 

  • Ohno, S., 1970, Evolution by Gene Duplication, Springer-Verlag, New York.

    Google Scholar 

  • Ohta, R., and Kimura, M., 1969a, Linkage disequilibrium due to random genetic drift, Genet. Res. 13: 47–55.

    Google Scholar 

  • Ohta, R., and Kimura, M., 1969b, Linkage disequilibrium at steady state determined by random drift and recurrent mutation, Genetics 63: 229–238.

    PubMed  CAS  Google Scholar 

  • Ohta, T., and Kimura, M., 1975, The effect of selected linked locus on heterozygosity of neutral alleles (the hitch-hiking effect), Genet. Res. 25: 313–326.

    Google Scholar 

  • Ohta, T., and Kimura, M., 1976, Hitch-hiking effect—a counter reply, Genet. Res. 28: 307–308.

    Google Scholar 

  • Parsons, P. A., 1973, Genetics of resistance to environmental stress in Drosophila populations, Annu. Rev. Genet. 7: 239–265.

    PubMed  CAS  Google Scholar 

  • Petit, C., and Ehrman, L., 1970, Sexual selection in Drosophila, in: Essays in Honor of Th. Dobzhansky ( M. K. Hecht and W. C. Steere, eds.), pp. 177–223, Appleton-CenturyCrofts, New York.

    Google Scholar 

  • Policansky, D., and Zouros, E., 1977, Gene differences between the sex ratio and standard gene arrangements of the X chromosome in Drosophila persimilis, Genetics 85: 507–511.

    PubMed  CAS  Google Scholar 

  • Pollak, E., Kempthorne, O., and Bailey, T. B., eds., 1977, Proceedings of the International Conference on Quantitative Genetics, Iowa State University Press, Ames, Iowa.

    Google Scholar 

  • Powell, J. R., 1974, Interaction of genetic loci: The effect of linkage disequilibrium on Hardy–Weinberg expectations, Heredity 32: 151–158.

    PubMed  CAS  Google Scholar 

  • Powell, J. R., and Richmond, R. C., 1974, Founder effects and linkage disequilibria in experimental populations of Drosophila, Proc. Nat. Acad. Sci. USA 71: 1663–1665.

    PubMed  CAS  Google Scholar 

  • Prakash, S., 1967, Chromosome interactions in Drosophila robusta, Genetics 57: 385–400.

    PubMed  CAS  Google Scholar 

  • Prakash, S., 1974, Gene differences between the sex ratio and standard gene arrangements of the X chromosome and linkage disequilibrium between loci in the standard gene arrangement of Drosophila pseudoobscura, Genetics 77: 795–804.

    PubMed  CAS  Google Scholar 

  • Prakash, S., 1976, Gene differences between third-chromosome inversions of Drosophila pseudoobscura, Genetics 84: 789–790.

    Google Scholar 

  • Prakash, S., and Levitan, M., 1973, Associations of alleles of the Esterase-1 locus with gene arrangements of the left arm of the second chromosome in Drosophila robusta, Genetics 75: 371–379.

    PubMed  CAS  Google Scholar 

  • Prakash, S., and Levitan, M., 1974, Association of alleles of the malic dehydrogenase locus with a pericentric inversion in Drosophila robusta, Genetics 77: 565–568.

    PubMed  CAS  Google Scholar 

  • Prakash, S., and Lewontin, R. C., 1968, A molecular approach to the study of genic heterozygosity in natural populations. III. Direct evidence of coadaptation in gene arrangements of Drosophila, Proc. Nat. Acad. Sci. USA 59: 398–405.

    PubMed  CAS  Google Scholar 

  • Prakash, S., and Lewontin, R. C., 1971, A molecular approach to the study of genic heterozygosity in natural populations. V. Further direct evidence of coadaptation in inversions of Drosophila, Genetics 69: 405–408.

    PubMed  CAS  Google Scholar 

  • Prakash, S., and Merritt, R. B., 1972, Direct evidence of genic differentiation between sex ratio and standard gene arrangements of X chromosome in Drosophila pseudoobscura, Genetics 72: 169–175.

    PubMed  CAS  Google Scholar 

  • Prout, T., 1971, The relation between fitness components and population prediction in Drosophila. I. The estimation of fitness components, Genetics 68: 127–149.

    PubMed  CAS  Google Scholar 

  • Prout, T., 1973, Appendix to Mitton, J. B., and Koehn, R. C., Population genetics of marine pelecypods. III. Epistasis between functionally related isoenzymes in Mytilus edulus, Genetics 73: 487–496.

    Google Scholar 

  • Rasmuson, M., Rasmuson, B., and Nilson, L. R., 1967, A study of isoenzyme polymorphism in experimental populations of Drosophila melanogaster, Hereditas 57: 263–274.

    PubMed  CAS  Google Scholar 

  • Rees, H., 1956, Genotype control of chromosome behavior in rye. III. Chiasma frequency in homozygotes and heterozygotes, Heredity 10: 409–424.

    Google Scholar 

  • Robbins, R. B., 1918, Some applications of mathematics to breeding problems II, Genetics 3: 73–92.

    PubMed  CAS  Google Scholar 

  • Roberts, R. M., and Baker, W. K., 1973, Frequency distribution and linkage disequilibrium of active and null esterase isozymes in natural populations of Drosophila montana, Am. Nat. 107: 709–726.

    Google Scholar 

  • Robertson, R. W., and Reeve, E. C. R., 1953, Studies in quantitative inheritance. IV. The effects of substituting chromosomes from selected strains in different genetic backgrounds, J. Genet. 51:586–610.

    Google Scholar 

  • Sheppard, P. M., 1953, Polymorphism, linkage and the blood groups, Am. Nat. 87: 283–294.

    Google Scholar 

  • Singh, R. S., 1972, Genetic variability and selective forces in two bulk-hybrid populations of barley, Ph.D. thesis, University of California at Davis.

    Google Scholar 

  • Sinnock, P., and Sing, C. F., 1972, Analysis of multilocus genetic systems in Tecumseh, Michigan. II. Consideration of correlation between non-alleles in gametes, Am. J. Hum. Genet. 24: 393–415.

    PubMed  CAS  Google Scholar 

  • Slatkin, M., 1972, On treating the chromosome as the unit of selection, Genetics 72: 157–168.

    PubMed  CAS  Google Scholar 

  • Smouse, P. E., 1974. Likelihood analysis of recombinational disequilibrium in multiple-locus gametic frequencies, Genetics 76: 557–565.

    PubMed  CAS  Google Scholar 

  • Smouse, P. E., and Neel, J. V., 1977, Multivariate analysis of gametic disequilibrium in the Yanomama, Genetics 85: 733–752.

    PubMed  CAS  Google Scholar 

  • Snell, G. D., Dausset, J., and Nathenson, S., 1976, Histocompatibility, New York, Academic Press.

    Google Scholar 

  • Sokal, R. R., and Fujii, K., 1972, The effects of genetic background in the ecology of selection in Tribolium populations, Evolution 26: 489–512.

    Google Scholar 

  • Spassky, B., Dobzhansky, T., and Anderson, W. W., 1965, Genetics of natural populations. XXXVI. Epistatic interactions of the components of the genetic load in Drosophila pseudoobscura, Genetics 52: 653–664.

    PubMed  CAS  Google Scholar 

  • Sperlich, D., and Feuerbach-Mravlag, H., 1974, Epistatic gene interaction, crossing over, and linked and unlinked inversions in Drosophila subobscura, Evolution 28: 67–75.

    Google Scholar 

  • Spiess, E. B., 1977, Genes in Populations, John Wiley and Sons, New York.

    Google Scholar 

  • Sprague, H. B., 1967, Plant breeding, Annu. Rev. Genet. 1: 269–294.

    Google Scholar 

  • Stalker, H. D., 1960, Chromosomal polymorphism in Drosophila paramelanica Patterson, Genetics 45: 95–114.

    PubMed  CAS  Google Scholar 

  • Stalker, H. D., 1961, The genetic systems modifying meiotic drive in Drosophila paramelanica, Genetics 46: 177–202.

    PubMed  CAS  Google Scholar 

  • Stalker, H. D., 1964, Chromosomal polymorphism in Drosophila euronotus, Genetics 49: 669–687.

    PubMed  CAS  Google Scholar 

  • Stalker, H. D., 1976, Chromosome studies in wild populations of D. melanogaster, Genetics 82: 323–347.

    PubMed  CAS  Google Scholar 

  • Stam, P., 1975, Linkage disequilibrium causing selection at a neutral locus in pooled Tribolium populations, Heredity 34: 29–38.

    PubMed  CAS  Google Scholar 

  • Statistical Genetics in Plant Breeding, 1963, Symposium held at Raleigh, North Carolina.

    Google Scholar 

  • Stebbins, G. L., 1957, Self-fertilization and population variability in the higher plants, Amer. Natur. 41: 337–354.

    Google Scholar 

  • Stebbins, G. L., 1971, Chromosomal Evolution in Higher Plants, Edward Arnold, London.

    Google Scholar 

  • Stephens, S. G., 1950, The internal mechanism of speciation in Gossypium, Bot. Rev. 16: 115–149.

    Google Scholar 

  • Strobeck, C., 1973, Three locus model with multiplicative fitness values, Genet. Res. 22: 195–200.

    PubMed  CAS  Google Scholar 

  • Strobeck, C., 1976, The three locus model with multiplicative fitness values: The crystallization of the genome, in: Population Genetics and Ecology ( S. Karlin and E. Nevo, eds.), pp. 781–790, Academic Press, New York.

    Google Scholar 

  • Suneson, C. A., 1956, An evolutionary plant breeding method, Agron. J. 48: 188–191.

    Google Scholar 

  • Sved, J. A., and Feldman, M. W., 1973, Correlation and probability methods for one and two loci, Theor. Popul. Biol. 4: 129–132.

    PubMed  CAS  Google Scholar 

  • Temin, R. G., Meyer, H. U., Dawson, P. S., and Crow, J. F., 1969, The influence of epistasis on homozygous viability depression in Drosophila melanogaster, Genetics 61: 497–519.

    CAS  Google Scholar 

  • Thomas, D. L., and Crumparker, D. W., 1970, dynamics of chromosomal polymorphism and genetic load: An application of the two-locus multiplicative model with heterosis, Genetics 64: 367–385.

    Google Scholar 

  • Thompson, V., 1976, Does sex accelerate evolution? Evol. Theory 1: 131–156.

    Google Scholar 

  • Thompson, V., 1977, Recombination and response to selection in Drosophila melanogaster, Genetics 85: 125–140.

    PubMed  CAS  Google Scholar 

  • Thomson, G., 1977, The effect of a selected locus on linked neutral loci, Genetics 85: 753–788.

    PubMed  CAS  Google Scholar 

  • Thomson, G., Bodmer, W. F., and Bodmer, J., 1976, The HL-A system as a model for studying the interaction between selection, migration, and linkage, in: ( S. Karlin, and E. Nevo, eds.), Population Genetics and Ecology, pp. 465–498, Academic Press, New York.

    Google Scholar 

  • Turner, J. R. G., 1967a, Mean fitness and the equilibria in multilocus polymorphisms, Proc. R. Soc. London Ser. B 169: 31–58.

    Google Scholar 

  • Turner, J. R. G., 1967b, On supergenes. I. The evolution of supergenes, Am. Nat. 101: 195–223.

    Google Scholar 

  • Turner, J. R. G., 1968, On supergenes. II. The estimation of gametic excess in natural populations, Genetica 39: 82–93.

    PubMed  CAS  Google Scholar 

  • Turner, J. R. G., 1969a, Epistatic selection in the rhesus and MNS blood groups, Ann. Hum. Genet. 33: 197–206.

    PubMed  CAS  Google Scholar 

  • Turner, J. R. G., 1969b, Models which help one to understand two-locus polymorphism, Jpn. J. Genet. 44: 131–134.

    Google Scholar 

  • Turner, J. R. G., 1970, Some properties of two-locus systems with epistatic selection, Genetics 64: 147–155.

    PubMed  CAS  Google Scholar 

  • Turner, J. R. G., 1971, Wright’s adaptive surface, and some general rules for equilibria in complex polymorphisms, Am. Nat. 105: 267–278.

    Google Scholar 

  • Turner, J. R. G., 1972, Selection and stability in the complex polymorphism of Moraba scurra, Evolution 26: 334–343.

    Google Scholar 

  • Turner, J. R. G., 1977, Butterfly mimicry: The genetical evolution of an adaptation, in: Evolutionary Biology, Vol. 10 ( M. K. Hecht, W. C. Steere, and B. Wallace, eds.), pp. 163–206, Plenum Press, New York.

    Google Scholar 

  • Valentin, J., 1973, Heritability of recombination frequency, Hereditas 75: 1–4.

    PubMed  CAS  Google Scholar 

  • Vetukhiv, M., 1953, Viability of hybrids between local populations of Drosophila pseudoobscura, Proc. Nat. Acad. Sci. USA 39: 30–34.

    CAS  Google Scholar 

  • Vetukhiv, M., 1954, Integration of the genotype in local populations of three species of Drosophila, Evolution 8: 241–251.

    Google Scholar 

  • Vetukhiv, M., and Beardmore, J. A. 1959, Effect of environment upon the manifestation of heterosis and homeostasis in Drosophila pseudoobscura, Genetics 44: 759–768.

    PubMed  CAS  Google Scholar 

  • Voelker, R. A., Mukai, T., and Johnson, F. M., 1977, Genetic variation in populations of Drosophila melanogaster from the western United States, Genetica 47: 143–148.

    Google Scholar 

  • Voelker, R. A., Langley, C. H., Leigh-Brown, A. J., and Ohnishi, S., 1978, New data on allozyme loci in Drosophila melanogaster, Drosophila Information Service 53: 200.

    Google Scholar 

  • Waddington, C. H., 1957, The Strategy of the Genes, Allen and Unwin, London.

    Google Scholar 

  • Wagener, D. K., and Cavalli-Sforza, L.L., 1975, Ethnic variation in genetic disease: Possible roles of hitchhiking and epistasis, Am. J. Hum. Genet. 27: 348–364.

    PubMed  CAS  Google Scholar 

  • Wagner, R. P., and Mitchell, H. K., 1955, Genetics and Metabolism, John Wiley and Sons, New York.

    Google Scholar 

  • Wallace, B., 1953, On coadaptation in Drosophila, Am. Nat. 87: 343–358.

    Google Scholar 

  • Wallace, B., 1968, Topics in Population Genetics, Norton, New York.

    Google Scholar 

  • Watanabe, T. K., and Watanabe, T., 1977, Enzyme and chromosome polymorphisms in a Japanese natural population of Drosophila melanogaster, Genetics 85: 319–329.

    PubMed  CAS  Google Scholar 

  • Webster, T. P., 1973, Adaptive linkage disequilibrium between two esterase loci of a salamander, Proc. Nat. Acad. Sci. USA 70: 1156–1160.

    PubMed  CAS  Google Scholar 

  • Weinberg, W., 1909, Über Vererbungsgesetze beim Menschen. Z. Induk. Abstamm. Vererbungsl. 1: 277–330.

    Google Scholar 

  • Weir, B. S., and Cockerham, C. C., 1973, Mixed self and random mating at two loci. Genet. Res. 21: 247–252.

    PubMed  CAS  Google Scholar 

  • Weir, B. S., and Cockerham, C. C., 1978, Testing hypotheses about linkage disequilibrium with multiple alleles, Genetics 88: 633–642.

    PubMed  CAS  Google Scholar 

  • Weir, B. S., Allard, R. W., and Kahler, A. L., 1972, Analysis of complex allozyme polymorphisms in a barley population, Genetics 72: 505–523.

    PubMed  CAS  Google Scholar 

  • Weir, B. S., Allard, R. W., and Kahler, A. L., 1974, Further analysis of complex allozyme polymorphisms in a barley population, Genetics 78: 911–919.

    PubMed  CAS  Google Scholar 

  • Weitkamp, L., 1977, Data on linkage disequilibrium in man, Am. J. Hum. Genet. 29: 113A.

    Google Scholar 

  • White, M. J. D., 1957, Cytogenetics of the grasshopper Moraba seurra. II. Heterotic systems and their interaction (with a statistical appendix by G. Griffing), Aust. J. Zool. 5: 305–337.

    Google Scholar 

  • White, M. J. D., Lewontin, R. C.,and Andrew, L. E., 1963, Cytogenetics of the grasshopper Moraba scurra. VII. Geographic variation of adaptive properties of inversions, Evolution 17: 147–162.

    Google Scholar 

  • Wilson, J., 1968, Experimental determination of fitness interactions in Drosophila melanogaster by the method of marginal populations, Genetics 59: 501–511.

    PubMed  CAS  Google Scholar 

  • Wilson, J., 1972, Experimentally determined, two locus fitnesses of Drosophila melanogaster males, Genetics 70: 445–455.

    PubMed  CAS  Google Scholar 

  • Wormack, J. E., and Sharp, M., 1976, Comparative autosomal linkage in mammals: Genetics of esterases in Mus musculus and Rattus norvegicus, Genetics 82: 665–675.

    Google Scholar 

  • Wright, S., 1932, The roles of mutation, inbreeding, crossbreeding and selection in evolution, Proc. Sixth Int. Congr. Genetics 1: 356–366.

    Google Scholar 

  • Wright, S., 1964, Biology and the philosophy of science, The Monist 48: 265–290.

    Google Scholar 

  • Wright, S., 1965, Factor interaction and linkage in evolution, Proc. R. Soc. London Ser. B 162: 80–104.

    Google Scholar 

  • Wright, S., 1969, Evolution and the Genetics of Populations, Vol. 2, The Theory of Gene Frequencies, University of Chicago Press, Chicago.

    Google Scholar 

  • Yamazaki, T., 1977, The effects of overdominance on linkage in a multilocus system, Genetics 86: 227–236.

    PubMed  CAS  Google Scholar 

  • Zouros, E., and Johnson, W., 1976, Linkage disequilibrium between functionally related enzyme loci of Drosophila mojavensis, Can. J. Genet. Cytol. 18: 245–254.

    PubMed  CAS  Google Scholar 

  • Zouros, E., and Krimbas, C. B., 1973, Evidence for linkage disequilibrium maintained by selection in two natural populations of Drosophila subobscura, Genetics 73: 659–674.

    CAS  Google Scholar 

  • Zouros, E., Krimbas, C. B., Tsakas, S., and Loukas, M., 1974, Genic versus chromosomal variation in natural populations of Drosophila subobscura, Genetics 78: 1223–1244.

    PubMed  CAS  Google Scholar 

  • Zouros, E., Golding, G. B., and MacKay, T. F. C., 1977, The effect of combining alleles into electrophoretic classes on detecting linkage disequilibrium, Genetics 85: 543–550.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hedrick, P., Jain, S., Holden, L. (1978). Multilocus Systems in Evolution. In: Hecht, M.K., Steere, W.C., Wallace, B. (eds) Evolutionary Biology. Evolutionary Biology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6956-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6956-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6958-9

  • Online ISBN: 978-1-4615-6956-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics