Skip to main content
Log in

Classification of Sandstone-Related Uranium Deposits

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Sandstone type deposits are the most common type of uranium deposits in the world. A large variety of sub-types have been defined, based either on the morphology of the deposits (e.g., tabular, roll front, etc), or on the sedimentological setting (e.g., paleovalley, paleochannel, unconformity), or on tectonic or lithologic controls (e.g., tectonolithologic, mafic dykes/sills), or still on a variety of others characteristics (phreatic oxidation type, interlayer permeable type, multi-element stratabound infiltrational, solution front limb deposit, humate type, etc.), reflecting the diversity of the characteristics of these deposits, but making it difficult to have a clear overview of these deposits. Moreover, uranium deposits occurring in the same sedimentological setting (e.g., paleochannel), presenting similar morphologies (e.g., tabular), may result from different genetic mechanisms and thus can be misleading for exploration strategies. The aim of the present paper is to propose a new view on sandstone-related uranium deposits combining both genetic and descriptive criteria. The dual view is indeed of primordial importance because all the critical characteristics of each deposit type, not limited to the morphology/geometry of the ore bodies and their relationships with depositional environments of the sandstone, have to be taken into account to propose a comprehensive classification of uranium deposits. In this respect, several key ore-forming processes, like the physical-chemical characteristics of the mineralizing fluid, have to be used to integrate genetic aspects in the classification. Although a succession of concentration steps, potentially temporally-disconnected, are involved in the genesis of some uranium mineralization, the classification here proposed will focus on the main mechanisms responsible for the formation and/or the location of ore deposits. The objective of this paper is also to propose a robust and widely usable terminology to define and categorize sandstone uranium deposits, considering the diversity of their origin and morphologies, and will be primarily based on the temperature of the mineralizing fluid considered as having played the critical role in the transportation of the uranium, starting from synsedimentary uranium deposits to those related to higher temperature fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Adams, S. S., Smith, R. B., 1981. Geology and Recognition Criteria for Sandstone Uranium Deposits in Mixed Fluvial-Shallow Marine Sedimentary Sequences, South Texas. Final Report. Office of Scientific and Technical Information (OSTI). https://doi.org/10.2172/6554832

  • Ahamdach, N., Pagel, M., Mathis, V., 1993. Melt Inclusions in Apatite Crystals from Permian Cinerites in the Lodève Uraniferous Basin, France. Comptes Rendus de le Academie des Sciences Serie Ii, 316(7): 929–936

    Google Scholar 

  • Ahmad, M., Wygralak, A. S., 1989. Calvert Hills, Northern Territory 1: 250 000 Metallogenic Map Series, Sheet SE53-8. Northern Territory Geological Survey, Map and Explanatory Notes, Government Printer of the Northern Territory. 71

  • Alexandre, P., Kyser, K., Layton-Matthews, D., et al., 2015. Formation of the Enigmatic Matoush Uranium Deposit in the Paleoprotozoic Otish Basin, Quebec, Canada. Mineralium Deposita, 50(7): 825–845. https://doi.org/10.1007/s00126-014-0569-5

    Article  Google Scholar 

  • Alexandre, P., Kyser, K., Thomas, D., et al., 2009. Geochronology of Unconformity-Related Uranium Deposits in the Athabasca Basin, Saskatchewan, Canada and Their Integration in the Evolution of the Basin. Mineralium Deposita, 44(1): 41–59. https://doi.org/10.1007/s00126-007-0153-3

    Article  Google Scholar 

  • Annesley, I. R., Madore, C., Hajnal, Z., 2003. Wollaston-Mudjatik Transition Zone: Its Characteristics and Influence on the Genesis of Unconformity-Type Uranium Deposits. In: Cuney, M., ed., Uranium Geochemistry 2003, Conference Proceedings, Nancy. 55–58

  • Barton, I. F., Barton, M. D., Thorson, J. P., 2018. Characteristics of Cu and U-V Deposits in the Paradox Basin (Colorado Plateau) and Associated Alteration. Society of Economic Geologists, Guidebook Series, 59:73–102

    Google Scholar 

  • Beaufort, D., Rigault, C., Billon, S., et al., 2015. Chlorite and Chloritization Processes through Mixed-Layer Mineral Series in Low-Temperature Geological Systems—A Review. Clay Minerals, 50(4): 497–523. https://doi.org/10.1180/claymin.2015.050.4.06

    Article  Google Scholar 

  • Beyer, S. R., Kyser, K., Hiatt, E. E., et al., 2012. Basin Evolution and Unconformity-Related Uranium Mineralization: The Camie River U Prospect, Paleoproterozoic Otish Basin, Quebec. Economic Geology, 107(3): 401–425. https://doi.org/10.2113/econgeo.107.3.401

    Article  Google Scholar 

  • Boiron, M. C., Cathelineau, M., Richard, A., 2010. Fluid Flows and Metal Deposition near Basement/Cover Unconformity: Lessons and Analogies from Pb-Zn-F-Ba Systems for the Understanding of Proterozoic U Deposits. Frontiers in Geofluids. Wiley-Blackwell, Oxford. 270–292. https://doi.org/10.1002/9781444394900.ch19

    Google Scholar 

  • Bonnetti, C., Cuney, M., Malartre, F., et al., 2015a. The Nuheting Deposit, Erlian Basin, NE China: Synsedimentary to Diagenetic Uranium Mineralization. Ore Geology Reviews, 69: 118–139. https://doi.org/10.1016/j.oregeorev.2015.02.010

    Article  Google Scholar 

  • Bonnetti, C., Cuney, M., Michels, R., et al., 2015b. The Multiple Roles of Sulfate-Reducing Bacteria and Fe-Ti Oxides in the Genesis of the Bayinwula Roll Front-Type Uranium Deposit, Erlian Basin, NE China. Economic Geology, 110(4): 1059–1081. https://doi.org/10.2113/econgeo.110.4.1059

    Article  Google Scholar 

  • Bonnetti, C., Liu, X. D., Yan, Z. B., et al., 2017. Coupled Uranium Mineralisation and Bacterial Sulphate Reduction for the Genesis of the Baxingtu Sandstone-Hosted U Deposit, SW Songliao Basin, NE China. Ore Geology Reviews, 82: 108–129. https://doi.org/10.1016/j.oregeorev.2016.11.013

    Article  Google Scholar 

  • Bonnetti, C., Zhou, L. L., Riegler, T., et al., 2020. Large S Isotope and Trace Element Fractionations in Pyrite of Uranium Roll Front Systems Result from Internally-Driven Biogeochemical Cycle. Geochimica et Cosmochimica Acta, 282: 113–132. https://doi.org/10.1016/j.gca.2020.05.019

    Article  Google Scholar 

  • Bowell, R. J., Barnes, A., Grogan, J., et al., 2009. Geochemical Controls on Uranium Precipitation in in Calcrete Palaeochannel Deposits of Namibia, Proceedings of the 24th IAGS, Fredericton, New Brunswick. 413–418

  • Bray, C. J., Spooner, T. C., Longstaffe, F. J., 1988. unconformity-Related Uranium Mineralization, Mcclean Deposits, North Saskatchewan, Canada: Hydrogen and Oxygen Isotope Geochemistry. The Canadian Mineralogist, 26: 249–268

    Google Scholar 

  • Brookins, D. G., 1980. Geochronologic Studies in the Grants Mineral Belt: New Mexico Bur. Mines Mineral Resources, Memoires, 38: 52–58

    Google Scholar 

  • Caldeira, C. L., Ciminelli, V. S. T., Osseo-Asare, K., 2010. The Role of Carbonate Ions in Pyrite Oxidation in Aqueous Systems. Geochimica et Cosmochimica Acta, 74(6): 1777–1789. https://doi.org/10.1016/j.gca.2009.12.014

    Article  Google Scholar 

  • Cameron, E., Mazzucchelli, R. H., Robbins, T. W., 1980. Yeelirrie Calcrete Uranium Deposit, Murchison Region, Western Australia. Journal of Geochemica Exploration, 12(2–3): 350–353

    Google Scholar 

  • Carlisle, D., 1984. Surficial Uranium Occurrences in Relation to Climate and Physical Setting. Surficial Uranium Deposits. IAEA-Tecdoc-322. Vienna. 25–35

  • Castillo-Oliver, M., Melgarejo, J. C., Torró, L., et al., 2020. Sandstone-Hosted Uranium Deposits as a Possible Source for Critical Elements: The Eureka Mine Case, Castell-Estaó, Catalonia. Minerals, 10(1): 34. https://doi.org/10.3390/min10010034

    Article  Google Scholar 

  • Cazoulat, M., 1985. Geological Environment of the Uranium Deposits in the Carboniferous and Jurassic Sandstones of the Western Margin of the Aïr Mountains in the Republic of Niger. In: Geological Environment of Sandstone Type Uranium Deposits. I.A.E.A., Vienna, TECDOC, 328:247–263

  • Cheng, Y. H., Wang, S. Y., Zhang, T. F., et al., 2020. Regional Sandstone-Type Uranium Mineralization Rooted in Oligo-Miocene Tectonic Inversion in the Songliao Basin, NE China. Gondwana Research, 88: 88–105. https://doi.org/10.1016/j.gr.2020.08.002

    Article  Google Scholar 

  • Chernonozhkin, S. M., Mercadier, J., Reisberg, L., et al., 2020. Evaluation of Rammelsbergite (NiAs2) as a Novel Mineral for 187Re-187Os Dating and Implications for Unconformity-Related U Deposits. Geochimica et Cosmochimica Acta, 280: 85–101. https://doi.org/10.1016/j.gca.2020.04.011

    Article  Google Scholar 

  • Chi, G. X., Xue, C. J., 2014. Hydrodynamic Regime as a Major Control on Localization of Uranium Mineralization in Sedimentary Basins. Science China Earth Sciences, 57(12): 2928–2933. https://doi.org/10.1007/s11430-014-4976-3

    Article  Google Scholar 

  • Chi, G., Chu, H., Petts, D., et al., 2019. Uranium-Rich Diagenetic Fluids Provide the Key to Unconformity-Related Uranium Mineralization in the Athabasca Basin. Scientific Reports, 9(1): 5530. https://doi.org/10.1038/s41598-019-42032-0

    Article  Google Scholar 

  • Chi, G., Li, Z., Chu, H., et al., 2018. A Shallow-Burial Mineralization Model for the Unconformity-Related Uranium Deposits in the Athabasca Basin. Economic Geology, 113(5): 1209–1217. https://doi.org/10.5382/econgeo.2018.4588

    Article  Google Scholar 

  • Chown, E. H., 1979. Structure and Metamorphism of the Otish Mountain Area of the Grenvillian Foreland Zone, Québec: Summary. Geological Society of America Bulletin, 90(1): 13–15. https://doi.org/10.1130/0016-7606(1979)9013:samoto>2.0.co;2

    Article  Google Scholar 

  • Chudasama, B., Porwal, A., González-Álvarez, I., et al., 2018. Calcrete-Hosted Surficial Uranium Systems in Western Australia: Prospectivity Modeling and Quantitative Estimates of Resources. Part 1—Origin of Calcrete Uranium Deposits in Surficial Environments: A Review. Ore Geology Reviews, 102: 906–936. https://doi.org/10.1016/j.oregeorev.2018.04.024

    Article  Google Scholar 

  • Comte, D., Blachère, H., Varlet, M., 1985. Geological Environment of the Uranium Deposits in the Permian of Lodève Basin, France. In “Geological Environments of Sandstone-Type Uranium Deposits”, IAEA TECDOC 328, Vienna. 248

  • Cui, T., Yang, J., Samson, I. M., 2012. Tectonic Deformation and Fluid Flow: Implications for the Formation of Unconformity-Related Uranium Deposits. Economic Geology, 107(1): 147–163. https://doi.org/10.2113/econgeo.107.1.147

    Article  Google Scholar 

  • Cuney, M., 2010. Evolution of Uranium Fractionation Processes through Time: Driving the Secular Variation of Uranium Deposit Types. Economic Geology, 105(3): 553–569. https://doi.org/10.2113/gsecongeo.105.3.553

    Article  Google Scholar 

  • Cuney, M., 2014. Felsic Magmatism and Uranium Deposits. Bulletin de la Société Géologique de France, 185(2): 75–92. https://doi.org/10.2113/gssgfbull.185.2.75

    Article  Google Scholar 

  • Cuney, M., 2011. Uranium and Thorium: The Extreme Diversity of the Resources of the World’s Energy Minerals. In: Sinding-Larsen, R., Wellmer, F. W., eds., Non-Renewable Resource Issues: Geoscientific and Societal Challenges, International Year of Planet Earth, Springer. 91–129

  • Cuney, M., Kyser, K., 2015. Geology and Geochemistry of Uranium and Thorium Deposits. Mineralogical Association of Canada, 46: 362

    Google Scholar 

  • Cuney, M., Mathieu, R., 2000. Extreme Light Rare Earth Element Mobilization by Diagenetic Fluids in the Geological Environment of the Oklo Natural Reactor Zones, Franceville Basin, Gabon. Geology, 28(8): 743–746. https://doi.org/10.1130/0091-7613(2000)28743:elreem>2.0.co;2

    Article  Google Scholar 

  • Dahlkamp, F. J., 2016. Uranium Deposits of the World. Springer, Berlin. 485–496. https://doi.org/10.1007/978-3-540-78554-5_10

    Book  Google Scholar 

  • Dahlkamp, F. J., 1993. Uranium Ore Deposits, Springer-Verlag, Berlin. 460

    Book  Google Scholar 

  • Dahlkamp, F. J., 2009. Uranium Deposits of the World: Asia. Springer-Verlag, Berlin. 494

    Book  Google Scholar 

  • Dargent, M., Truche, L., Dubessy, J., et al., 2015. Reduction Kinetics of Aqueous U(VI) in Acidic Chloride Brines to Uraninite by Methane, Hydrogen or C-Graphite under Hydrothermal Conditions: Implications for the Genesis of Unconformity-Related Uranium Ore Deposits. Geochimica et Cosmochimica Acta, 167: 11–26. https://doi.org/10.1016/j.gca.2015.06.027

    Article  Google Scholar 

  • Dayboll, R., Rainbird, R., Hahn, K., 2010. Characterization of Mineralization and Deposit Style of the Mountain Lake Uranium Deposit, Hornby Bay Basin, Nunavut. AAPG Search and Discovery Article, GeoConvention 2010, Calgary

  • De Voto, R. H., 1978. Uranium Geology and Exploration: Lecture Notes and References. Colorado School of Mines, Golden. 396

    Google Scholar 

  • Delaney, G. D., 1993. A Re-Examination of the Context of U-Cu, Cu, and U Mineralization, Duddridge Lake, Wollaston Domain, In: Summary of Investigations 1993, Saskatchewan Geological Survey, Sask

    Google Scholar 

  • Derome, D., Cathelineau, M., Cuney, M., et al., 2005. Mixing of Sodic and Calcic Brines and Uranium Deposition at McArthur River, Saskatchewan, Canada: A Raman and Laser-Induced Breakdown Spectroscopic Study of Fluid Inclusions. Economic Geology, 100(8): 1529–1545. https://doi.org/10.2113/gsecongeo.100.8.1529

    Article  Google Scholar 

  • Derome, D., Cuney, M., Cathelineau, M., et al., 2003. A Detailed Fluid Inclusion Study in Silicified Breccias from the Kombolgie Sandstones (Northern Territory, Australia): Inferences for the Genesis of Middle-Proterozoic Unconformity-Type Uranium Deposits. Journal of Geochemical Exploration, 80(2/3): 259–275. https://doi.org/10.1016/S0375-6742(03)00194-8

    Article  Google Scholar 

  • Dickinson, K. A., Duval, J. S., 1977. South-Texas Uranium: Geologic Controls, Exploration Techniques, and Potential, In: Campbell, M. D., ed., Geology of Alternate Energy Resources. Houston Geological Society, Houston. 45–66

    Google Scholar 

  • Dickinson, W. R., Gehrels, G. E., 2008. U-Pb Ages of Detrital Zircons in Relation to Paleogeography: Triassic Paleodrainage Networks and Sediment Dispersal across Southwest Laurentia. Journal of Sedimentary Research, 78(12): 745–764. https://doi.org/10.2110/jsr.2008.088

    Article  Google Scholar 

  • Douglas, G. B., Butt, C. R. M., Gray, D. J., 2011. Geology, Geochemistry and Mineralogy of the Lignite-Hosted Ambassador Palaeochannel Uranium and Multi-Element Deposit, Gunbarrel Basin, Western Australia. Mineralium Deposita, 46(7): 761–787. https://doi.org/10.1007/s00126-011-0349-4

    Article  Google Scholar 

  • Eargle, D. H., Weeks, A. D., 1961. Possible Relation between Hydrogen Sulfide-Bearing Hydrocarbons in Fault-Line Oil Fields and Uranium Deposits in the Southeast Texas Coastal Plain. US Geol. Survey. Profess. 424

  • Eglinger, A., André -Mayer, A. S., Vanderhaeghe, O., et al., 2013. Geochemical Signatures of Uranium Oxides in the Lufilian Belt: From Unconformity-Related to Syn-Metamorphic Uranium Deposits during the Pan-African Orogenic Cycle. Ore Geology Reviews, 54: 197–213. https://doi.org/10.1016/j.oregeorev.2013.04.003

    Article  Google Scholar 

  • Fayek, M., Kyser, T. K., 1997. Characterization of Multiple Fluid-Flow Events and Rare Earth-Element Mobility Associated with Formation of Unconformity-Type Uranium Deposits in the Athabasca Basin, Saskatchewan. Canadian Mineralogist, 35(3): 627–658

    Google Scholar 

  • Finch, W. I., 1996. Uranium Provinces of North America—Their Definition, Distribution, and Models. United States Geological Survey Bulletin, Washington, D. C. https://doi.org/10.3133/b2141

    Google Scholar 

  • Finch, W. I., Davis, J. F., 1985. Sandstone-Type Uranium Deposits—An Introduction. In: Geological Environments of Sandstone-Type Uranium Deposits, IAEA TECDOC-328, International Atomic Energy Agency, Vienna. 11–21

    Google Scholar 

  • Fischer, R. P., 1942. Vanadium Deposits of Colorado and Utah, a Preliminary Report. US Geological Survey, Washington, D. C. https://doi.org/10.3133/b936p

    Google Scholar 

  • Forbes, P., 1988. Rôles des Structures Sédimentaires et Tectoniques, du Volcanisme Alcalin Régional et des Fluides Diagénétiques-Hydrothermaux Pour la Formation des Minéralisations à U-Zr-Zn-V-MO d’Akouta (Niger). Géol. Géochim. Mém., 17: 387

    Google Scholar 

  • Forbes, P., Pacquet, A., Chantret, F., et al., 1984. Marqueurs du Volca NISME dans le Gisement Duranium d’Akouta (République du Niger). Compte Rendus à l’Académie des Sciences, 298(11–15): 647–650

    Google Scholar 

  • Gancarz, A. J., 1977. U-Pb Age (2.05×109 Years) of the Oklo Uranium Deposit. In: IAEA Symposium on Natural Fission Reactors, Paris, Dec. 19–21, 1977

  • Garven, G., 1999. Proterozoic Basins, Fluids and Giant Ore Deposits of Northern Australia. Sciences Geologiques, 99: 71–74

    Google Scholar 

  • Gatzweiler, R., 1987. Uranium Mineralization in the Proterozoic Otish Basin, Central Quebec, Canada, In: Friedrich, G., Gatzweiler, R., Vogt, J., eds., Uranium Mineralization—New Aspects on Geology, Mineralogy, Geochemistry and Exploration Methods. Gebrüder Borntraeger, Berlin-Stuttgart

    Google Scholar 

  • Gauthier-Lafaye, F., 1986. Les Gisements d’Uranium du Gabon et Les Réacteurs d’Oklo. Modèle Métallogénique de Gîtes à Fortes Teneurs du Protérozoïque Iinférieur, Sciences Géologiques, Bulletins et Mémoires, 78: 206

    Google Scholar 

  • Gauthier-Lafaye, F., Weber, F., 1989. The Francevillian (Lower Proterozoic) Uranium Ore Deposits of Gabon. Economic Geology, 84(8): 2267–2285. https://doi.org/10.2113/gsecongeo.84.8.2267

    Article  Google Scholar 

  • Genest, S., 1989. Histoire Géologique du Bassin d’Otish, Protérozoïque Inférieur (Québec): [Dissertation]. Université de Montréal, Montréal. 329

    Google Scholar 

  • Gerbeaud, O., 2006. Evolution Structurale du Bassin de Tim Mersoï le Rôle des Déformations de la Couverture Sédimentaire sur la Mise en Place des Gisements Uranifère du Secteur d Arlit (Niger): [Dissertation]. Paris-Sud University, Orsay. 276

    Google Scholar 

  • Gigon, J., 2019. Dynamics of the McArthur Basin Diagenetic/Hydrothermal System (Australia): Timing and Nature of Fluid Flow and Constraints on the Distribution of Mineral Resources (U, Cu, Pb-Zn): [Dissertation], Univ. Lorraine, Nancy. 404

    Google Scholar 

  • Gigon, J., Mercadier, J., Annesley, I. R., et al., 2021. Uranium Mobility and Deposition over 1.3 Ga in the Westmoreland Area (McArthur Basin, Australia). Mineralium Deposita, 56(7): 1321–1344. https://doi.org/10.1007/s00126-020-01031-2

    Article  Google Scholar 

  • Giles, D., Nutman, A. P., 2002. SHRIMP U-Pb Monazite Dating of 1 600–1 580 Ma Amphibolite Facies Metamorphism in the Southeastern Mt Isa Block, Australia. Australian Journal of Earth Sciences, 49(3): 455–465. https://doi.org/10.1046/j.1440-0952.2002.00931.x

    Article  Google Scholar 

  • Goldhaber, M. B., Reynolds, R. L., Rye, R. O., 1979. Formation and Resulfidization of a South Texas Roll-Type Uranium Deposit. U. S. Geological Survey Open-File Report 79–1651: 41

    Google Scholar 

  • Granger, H. C., Warren, C. G., 1979. The Importance of Dissolved Free Oxygen during Formation of Sandstone-Type Uranium Deposits. U. S. Geological Survey Open-File Report. 79–1603: 1–22

    Google Scholar 

  • Hall, S. M., Mihalasky, M. J., Tureck, K., et al., 2017. Genetic and Grade and Tonnage Models for Sandstone-Hosted Roll-Type Uranium Deposits, Texas Coastal Plain, USA. Ore Geology Reviews, 80: 716–753

    Article  Google Scholar 

  • Hamilton, M. A., Buchan, K. L., 2016. A 2 169 Ma U-Pb Baddeleyite Age for the Otish Gabbro, Quebec: Implications for Correlation of Proterozoic Magmatic Events and Sedimentary Sequences in the Eastern Superior Province. Canadian Journal of Earth Sciences, 53(2): 119–128. https://doi.org/10.1139/cjes-2015-0131

    Article  Google Scholar 

  • Hanly, A., 2005. Evolution of Mesoproterozoic Basins and Their Economic Potential: [Dissertation]. Queen’s University, Kingston. 276

    Google Scholar 

  • Hartley, A. J., Owen, A., Weissmann, G. S., et al., 2018. Modern and Ancient Amalgamated Sandy Meander-Belt Deposits: Recognition and Controls on Development. Int. Assoc. Sedimentology Special Publication, 48: 349–384

    Google Scholar 

  • Hartley, A. J., Weissmann, G. S., Nichols, G. J., et al., 2010. Large Distributive Fluvial Systems: Characteristics, Distribution, and Controls on Development. Journal of Sedimentary Research, 80(2): 167–183. https://doi.org/10.2110/jsr.2010.016

    Article  Google Scholar 

  • Hecht, L., Cuney, M., 2000. Hydrothermal Alteration of Monazite in the Precambrian Crystalline Basement of the Athabasca Basin (Saskatchewan, Canada): Implications for the Formation of Unconformity-Related Uranium Deposits. Mineralium Deposita, 35(8): 791–795. https://doi.org/10.1007/s001260050280

    Article  Google Scholar 

  • Hellerschmidt-Alber, J., 2008. Geologie des Gebietes Südlich von Forstau im Ennstal auf ÖK 126 Radstadt (Bundesland Salzburg). Jahrbuch der Geologischen Bundesanstalt, 148(2): 159–173

    Google Scholar 

  • Hoeve, J., Quirt, D., 1987. A Stationary Redox Front as a Critical Factor in the Formation of High-Grade, Unconformity-Type Uranium Ores in the Athabasca Basin, Saskatchewan, Canada. Bulletin de Minéralogie, 110(2): 157–171. https://doi.org/10.3406/bulmi.1987.7977

    Article  Google Scholar 

  • Höhndorf, A., Bianconi, F., Pechmann, E. V., 1987. Geochronology and Metallogeny of Vein-Type Uranium Occurrences in the Otish Basin Area, Quebec, Canada, in Metallogenesis of Uranium Deposits. Proceedings of a Technical Committee: IAEA, Vienna. 233–260

    Google Scholar 

  • Hynes, A., Rivers, T., 2010. Protracted Continental Collision-Evidence from the Grenville Orogen. Canadian Journal of Earth Sciences, 47(5): 591–620. https://doi.org/10.1139/e10-003

    Article  Google Scholar 

  • IAEA, 2009. World Distribution of Uranium Deposits (UDEPO) with Uranium Deposit Classification. IAEA TECDOC 1629, Vienna. 128 IAEA, 2016. World Distribution of Uranium Deposits (UDEPO). IAEA TECDOC 1843, Vienna. 262

    Google Scholar 

  • IAEA, 2018a. Geological Classification of Uranium Deposits and Description of Selected Examples. IAEA TECDOC 1842, Vienna. 248

    Google Scholar 

  • IAEA, 2018b. Unconformity Related Deposits. IAEA TECDOC 1857, Vienna. 298

    Google Scholar 

  • Jefferson, C. W., Thomas, D. J., Gandhi, S. S., et al., 2007. Unconformity-Associated Uranium Deposits of the Athabasca Basin, Saskatchewan and Alberta. In: Goodfellow, W. D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, The Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, 5: 273–305

    Google Scholar 

  • Jia, J. M., Rong, H., Jiao, Y. Q., et al., 2020. Mineralogy and Geochemistry of Carbonate Cement in Sandstone and Implications for Mineralization of the Qianjiadian Sandstone-Hosted Uranium Deposit, Southern Songliao Basin, China. Ore Geology Reviews, 123: 103590. https://doi.org/10.1016/j.oregeorev.2020.103590

    Article  Google Scholar 

  • Jin, R. S., Teng, X. M., Li, X. G., et al., 2020. Genesis of Sandstone-Type Uranium Deposits along the Northern Margin of the Ordos Basin, China. Geoscience Frontiers, 11(1): 215–227. https://doi.org/10.1016/j.gsf.2019.07.005

    Article  Google Scholar 

  • Kish, L., Cuney, M., 1981. Uraninite-Albite Veins from the Mistamisk Valley of the Labrador Trough, Quebec. Mineralogical Magazine, 44(336): 471–483. https://doi.org/10.1180/minmag.1981.044.336.13

    Article  Google Scholar 

  • Kislyakov, Ya. M., Shchetochkin, V. N., 2000. Hydrogenic Ore Formation. Geoinformmark, Moscow. 608 (in Russian)

    Google Scholar 

  • Kleiman, L. E., 1999. Mineralogía y Petrología del Volcanismo Permo-Triásico y Triásico del Bloque de San Rafael en el área de Sierra Pintada, Provincia de Mendoza, y su Relación con las Mineralizaciones de Uranio: [Dissertation], Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires. 286 (in Spanish)

    Google Scholar 

  • Klingmuller, L. M. L., 1989. The Green Mountain Uranium District, Central Wyoming: Type Locality of Solution Front Limb Deposits. IAEA-Tecdoc, 500: 173–190

    Google Scholar 

  • Kochkin, B. T., Tarasov, N. N., Andreeva, O. V., et al., 2017. Polygenetic and Polychronic Uranium Mineralization at Deposits of the Khiagda Ore Field, Buryatia. Geology of Ore Deposits, 59(2): 141–155. https://doi.org/10.1134/S1075701517020015

    Article  Google Scholar 

  • Kyser, K., Cuney, M., 2015. Basin and Uranium Deposits. In: Cuney, M., Kyser, K., eds., The Geology and Geochemistry of Uranium and Thorium Deposits, Mineralogical Association of Canada, 46: 225–304

  • Lach, P., 2012. Signature Géochimique des Eléments des Terres Rares Dans les Oxydes D’uranium et Minéraux Associés Dans les Gisements D’uranium: Analyse par Ablation Laser Couplée à l’ICP-MS et étude Géochronologique: [Dissertation], Univ. Lorraine, Nancy. 296

    Google Scholar 

  • Lancelot, J., Vella, V., 1989. Datation U-Pb Liasique de La Pechblende de Rabejac; Mise en Evidence D’une Preconcentration Uranifere Permienne Dans le Bassin de Lodeve (Herault). Bulletin de la Société Géologique de France, V(2): 309–315. https://doi.org/10.2113/gssgfbull.v.2.309

    Article  Google Scholar 

  • Landais, P., 1986. Geochemical Analyses of the Organic Matter Associated with the Breccia Pipes in the Grand Canyon Area. Geological Society of America Abstracts with Programs, 18: 389

    Google Scholar 

  • Landais, P., 1993. Bitumens in Uranium Deposits. In: Parnell, J., Kucha, H., Landais, P., eds., Bitumens in Ore Deposits. Springer-Verlag, Berlin, 213–238

    Chapter  Google Scholar 

  • Landais, P., Connan, J., 1986. Source Rock Potential and Oil Alteration in the Uraniferous Basin of Lodève (Hérault, France). Potentiel Pétrolier et Dégradation des Huiles Dans Le Bassin Uranifère de Lodève (Hérault, France). Sciences Géologiques Bulletin, 39(3): 293–314. https://doi.org/10.3406/sgeol.1986.1732

    Article  Google Scholar 

  • Le Carlier De Veslud, C., Cuney, M., Lorilleux, G., et al., 2009. 3D Modeling of Uranium-Bearing Solution-Collapse Breccias in Proterozoic Sandstones (Athabasca Basin, Canada) —Metallogenic Interpretations. Computers & Geosciences, 35(1): 92–107. https://doi.org/10.1016/j.cageo.2007.09.008

    Article  Google Scholar 

  • Lecomte, A., Michels, R., Cathelineau, M., et al., 2020. Uranium Deposits of Franceville Basin (Gabon): Role of Organic Matter and Oil Cracking on Uranium Mineralization. Ore Geology Reviews, 123: 103579. https://doi.org/10.1016/j.oregeorev.2020.103579

    Article  Google Scholar 

  • Lesbros-Piat-Desvial, M., Beaudoin, G., Mercadier, J., et al., 2017. Age and Origin of Uranium Mineralization in the Camie River Deposit (Otish Basin, Québec, Canada). Ore Geology Reviews, 91: 196–215. https://doi.org/10.1016/j.oregeorev.2017.10.006

    Article  Google Scholar 

  • Lewis, S. R., Trimble, D. E., 1959. Geology and Uranium Deposits of Monument Valley San Juan County, Utah. USGS Prof. Pap. 1087D, 121–131

  • Lewry, J. F., Sibbald, T. I. I., 1979. A review of pre-Athabasca Basement Geology in Northern Saskatchewan, In: Parslow, G. R., ed., Uranium Exploration Techniques. Saskatchewan Geological Society Special Publication, 4: 19–58

  • Lorilleux, G., Jébrak, M., Cuney, M., et al., 2002. Polyphase Hydrothermal Breccias Associated with Unconformity-Related Uranium Mineralization (Canada): From Fractal Analysis to Structural Significance. Journal of Structural Geology, 24(2): 323–338. https://doi.org/10.1016/S0191-8141(01)00068-2

    Article  Google Scholar 

  • Ludwig, K. R., Simmons, K. R., 1992. U-Pb Dating of Uranium Deposits in Collapse Breccia Pipes of the Grand Canyon Region. Economic Geology, 87(7): 1747–1765. https://doi.org/10.2113/gsecongeo.87.7.1747

    Article  Google Scholar 

  • Ludwig, K. R., Simmons, K. R., Webster, J. D., 1984. U-Pb Isotope Systematics and Apparent Ages of Uranium Ores, Ambrosia Lake and Smith Lake Districts, Grants Mineral Belt, New Mexico. Economic Geology, 79(2): 322–337. https://doi.org/10.2113/gsecongeo.79.2.322

    Article  Google Scholar 

  • Maksimova, M. F., Shmariovich, E. M., 1993. Bedded-Infiltrational Ore Formation. Nedra, Moscow. 160 (in Russian)

    Google Scholar 

  • Mamadou, M. M., Cathelineau, M., Bourdelle, F., et al., 2016. Hot Fluid Flows around a Major Fault Identified by Paleothermometric Studies (Tim Mersoï Basin, Niger). Journal of Sedimentary Research, 86(8): 914–928. https://doi.org/10.2110/jsr.2016.62

    Article  Google Scholar 

  • Mamadou, M. M., 2016. Le Système Métallogénique des Gisements d’Uranium Associés à la Faille d-Arlit (Bassin de Tim Mersoï, Niger): Diagenèse, Circulations des Fluides et Mécanismes D’enrichissement en métaux (U, Cu, V): [Dissertation]. Univ. Lorraine, Nancy. 402

    Google Scholar 

  • Martin, M. S., 1992. Genèse et Evolution Structural du Bassin Permien de Lodéve (Hérault-France). Cuadernos de Geologia Iberica, Editoria Complutense, Madrid. 16: 75–90

    Google Scholar 

  • Mashkovtsev, G. A., Kochenov, A. V., Khaldey, A. E., 1995. On Hydrothermal Sedimentary Formation of Stratiform Uranium Deposits in Phanerozoic Depressions. Rare-Metal-Uranium Ore Formation within Sedimentary Rocks. Nauka, Moscow. 37–51 (in Russian)

    Google Scholar 

  • Mathieu, R., Cuney, M., Cathelineau, M., 2000. Geochemistry of Palaeofluids Circulation in the Franceville Basin and around Oklo Natural Nuclear Reaction Zones (Gabon). Journal of Geochemical Exploration, 69/70: 245–249. https://doi.org/10.1016/s0375-6742(00)00054-6

    Article  Google Scholar 

  • Mathieu, R., Deschamps, Y., Selezneva, V., et al., 2015. Key Mineralogical Characteristics of the New South Tortkuduk Uranium Roll-Front Deposits, Kazakhstan. Conference: 13th SGA Biennal Meeting, August 2015, Nancy. 1835–1838

  • Mathis, V., Robert, J. P., Saint Martin, J., 1990. Géologie et Métallogénie des Gisements D’uranium du Bassin Permien de Lodève (sud du Massif Central Français). Chronique de la Recherche Minière, 58(499): 31–40

    Google Scholar 

  • McLemore, V. T., 2010. The Grants Uranium District, New Mexico: Update on Source, Deposition, and Exploration. The Mountain Geologist, 48: 23–44

    Google Scholar 

  • Meek, A., 2014. Sandstone Uranium Deposits of Nebraska and Colorado: A Comparative Study: [Dissertation]. Manitoba University, Manitoba. 141

    Google Scholar 

  • Mendez Santizo, J., Gauthier-Lafaye, F., Liewig, N., et al., 1991. Existence d’un Hydrothermalisme tardif Dans le Bassin de Lodève (Hérault). Arguments PaléOTHERMO Métriques et Géochronologiques. Compte Rendus à L’Académie des Sciences, 312: 739–745

    Google Scholar 

  • Mercadier, J., Annesley, I. R., McKechnie, C. L., et al., 2013. Magmatic and Metamorphic Uraninite Mineralization in the Western Margin of the Trans-Hudson Orogen (Saskatchewan, Canada): A Uranium Source for Unconformity-Related Uranium Deposits? Economic Geology, 108(5): 1037–1065. https://doi.org/10.2113/econgeo.108.5.1037

    Article  Google Scholar 

  • Mercadier, J., Cuney, M., Lach, P., et al., 2011. Origin of Uranium Deposits Revealed by Their Rare Earth Element Signature. Terra Nova, 23(4): 264–269. https://doi.org/10.1111/j.1365-3121.2011.01008.x

    Article  Google Scholar 

  • Mernagh, T. P., Wygralak, A. S., 2011. A Fluid Inclusion Study of Uranium and Copper Mineral Systems in the Murphy Inlier, Northern Australia. Russian Geology and Geophysics, 52(11): 1421–1435. https://doi.org/10.1016/j.rgg.2011.10.011

    Article  Google Scholar 

  • Meunier, J. D., 1994. The Composition and Origin of Vanadium-Rich Clay Minerals in Colorado Plateau Jurassic Sandstones. Clays and Clay Minerals, 42(4): 391–401.https://doi.org/10.1346/CCMN.1994.0420403

    Article  Google Scholar 

  • Meunier, J. D., Landais, P., Monthioux, M., et al., 1987. Oxidation-Reduction Processes in the Genesis of the Uranium-Vanadium Tabular Deposits of the Cottonwood Wash Mining Area (Utah, USA): Evidence from Petrological Study and Organic Matter Analysis. Bulletin de Minéralogie, 110(2): 145–156. https://doi.org/10.3406/bulmi.1987.7976

    Article  Google Scholar 

  • Miller, D. S., Laurence Kulp, J., 1963. Isotopic Evidence on the Origin of the Colorado Plateau Uranium Ores. Geological Society of America Bulletin, 74(5): 609–630. https://doi.org/10.1130/0016-7606(1963)74[609:ieotoo]2.0.co;2

    Article  Google Scholar 

  • Min, M. Z., Luo, X. Z., Mao, S. L., et al., 2002. The Saqisan Mine—A Paleokarst Uranium Deposit, South China. Ore Geology Reviews, 19(1/2): 79–93. https://doi.org/10.1016/S0169-1368(00)00010-X

    Article  Google Scholar 

  • Mueller, A., Halbach, P., 1983. The Anderson Mine (Arizona), An Early Diagenetic Uranium Deposit in Miocene Lake Sediments. Economic Geology, 78(2): 275–292. https://doi.org/10.2113/gsecongeo.78.2.275

    Article  Google Scholar 

  • Nakashima, S., Disnar, J. R., Perruchot, A., et al., 1987. Fixation et Réduction de L uranium Par Les Matières Organiques Naturelles: Mécanismes et Aspects Cinétiques. Bulletin de Minéralogie, 110(2): 227–234. https://doi.org/10.3406/bulmi.1987.7982

    Article  Google Scholar 

  • Nash, J. T., Granger, H. C., Adams, S. S, 1981. Geology and Concepts of Genesis of Important Types of Uranium Deposits. Society of Economic Geologists, 75: 63–116. https://doi.org/10.5382/av75.04

    Google Scholar 

  • Ndongo, A., Guiraud, M., Vennin, E., et al., 2016. Control of Fluid-Pressure on Early Deformation Structures in the Paleoproterozoic Extensional Franceville Basin (SE Gabon). Precambrian Research, 277: 1–25. https://doi.org/10.1016/j.precamres.2016.02.003

    Article  Google Scholar 

  • Northrop, H. R., Goldhaber, M. B., Landis, G. P., et al., 1990. Genesis of the Tabular-Type Vanadium-Uranium Deposits of the Henry Basin, Utah. Economic Geology, 85(2): 215–269. https://doi.org/10.2113/gsecongeo.85.2.215

    Article  Google Scholar 

  • Nuccio, V. F., Condon, S. M., 2000. Burial and Thermal History of the Paradox Basin, Utah and Colorado, and Petroleum Potential of the Middle Pennsylvanian Paradox Basin. US Geological Survey. Washington, D. C. https://doi.org/10.3133/b00o

    Google Scholar 

  • Orth, K., 2010. Geology, Volcanology and Mineral Potential of the Cliffdale and Seigal Volcanics, Calvert Hills 1: 250 000 Geological Map Sheet, SE 53-08, Northern Territory. Northern Territory Geological Survey, Record 2010-003

  • Pagel, M., Cavellec, S., Forbes, P., et al., 2005. Uranium Deposits in the Arlit Area (Niger). Mineral Deposit Research: Meeting the Global Challenge. Springer, Berlin. https://doi.org/10.1007/3-540-27946-6_79

    Google Scholar 

  • Parslow, G. R., Thomas, D. J., 1982. Uranium Occurrences in the Cree Lake Zone, Saskatchewan, Canada. Mineralogical Magazine, 46(339): 163–171. https://doi.org/10.1180/minmag.1982.046.339.02

    Article  Google Scholar 

  • Partin, C. A., Bekker, A., Planavsky, N. J., et al., 2013. Large-Scale Fluctuations in Precambrian Atmospheric and Oceanic Oxygen Levels from the Record of U in Shales. Earth and Planetary Science Letters, 369/370: 284–293. https://doi.org/10.1016/j.epsl.2013.03.031

    Article  Google Scholar 

  • Pechenkin, I., 2014. Sandstone Uranium Deposits of Eurasia: From Genetic Concepts to Forecasting New Discoveries. URAM 2014. IAEA, Vienna. 68

  • Petrascheck, W. E., Erkan, E., Siegl, W., 1977. Types of Uranium Deposits in the Austrian Alps, Geology, Mining and Extractive Processing of Uranium (Proc. Int. Symp. London, 1977), Institution of Mining and Metallurgy, London. 71–75

    Google Scholar 

  • Polito, P. A., Kyser, T. K., Rheinberger, G., et al., 2005. A Paragenetic and Isotopic Study of the Proterozoic Westmoreland Uranium Deposits, Southern McArthur Basin, Northern Territory, Australia. Economic Geology, 100(6): 1243–1260. https://doi.org/10.2113/gsecongeo.100.6.1243

    Article  Google Scholar 

  • Ramm, M., 1992. Porosity-Depth Trends in Reservoir Sandstones: Theoretical Models Related to Jurassic Sandstones Offshore Norway. Marine and Petroleum Geology, 9(5): 553–567. https://doi.org/10.1016/0264-8172(92)90066-N

    Article  Google Scholar 

  • Renac, C., Kyser, T. K., Durocher, K., et al., 2002. Comparison of Diagenetic Fluids in the Proterozoic Thelon and Athabasca Basins, Canada: Implications for Protracted Fluid Histories in Stable Intracratonic Basins. Canadian Journal of Earth Sciences, 39(1): 113–132. https://doi.org/10.1139/e01-077

    Article  Google Scholar 

  • Richard, A., Banks, D. A., Mercadier, J., et al., 2011. An Evaporated Seawater Origin for the Ore-Forming Brines in Unconformity-Related Uranium Deposits (Athabasca Basin, Canada): Cl/Br and δ37Cl Analysis of Fluid Inclusions. Geochimica et Cosmochimica Acta, 75(10): 2792–2810. https://doi.org/10.1016/j.gca.2011.02.026

    Article  Google Scholar 

  • Richard, A., Rozsypal, C., Mercadier, J., et al., 2012. Giant Uranium Deposits Formed from Exceptionally Uranium-Rich Acidic Brines. Nature Geoscience, 5(2): 142–146. https://doi.org/10.1038/ngeo1338

    Article  Google Scholar 

  • Robbins, M., 2009. Sedimentology and Sedimentary Tectonics of the Salt Wash Member, Morrison Formation, Western Colorado: [Dissertation]. Boston College, Boston. 75

    Google Scholar 

  • Rong, H., Jiao, Y. Q., Liu, X. F., et al., 2020. Effects of Basic Intrusions on REE Mobility of Sandstones and Their Geological Significance: A Case Study from the Qianjiadian Sandstone-Hosted Uranium Deposit in the Songliao Basin. Applied Geochemistry, 120: 104665. https://doi.org/10.1016/j.apgeochem.2020.104665

    Article  Google Scholar 

  • Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2019. Origin of the Carbonaceous Debris and Its Implication for Mineralization within the Qianjiadian Uranium Deposit, Southern Songliao Basin. Ore Geology Reviews, 107: 336–352. https://doi.org/10.1016/j.oregeorev.2019.02.036

    Article  Google Scholar 

  • Salze, D., Belcourt, O., Harouna, M., 2018. The First Stage in the Formation of the Uranium Deposit of Arlit, Niger: Role of a New Non-Continental Organic Matter. Ore Geology Reviews, 102: 604–617. https://doi.org/10.1016/j.oregeorev.2018.09.021

    Article  Google Scholar 

  • Sanford, R. F., 1992. A New Model for Tabular-Type Uranium Deposits. Economic Geology, 87(8): 2041–2055. https://doi.org/10.2113/gsecongeo.87.8.2041

    Article  Google Scholar 

  • Sanguinetti, H., Oumarou, J., Chantret, F., 1982. Localisation de Luranium dans les Figures de Sédimentation des Grès Hôtes du Gisement d’Akouta, République du Niger. Compte Rendus à l’Académie des Sciences, 264(II): 591–594

    Google Scholar 

  • Sani, A., Konaté, M., Karimou, D. H., et al., 2020. Polyphasic Tectonic History of the N70° DASA Graben (Northern, Niger). Global Journal of Earth and Environmental Science, 5(3): 58–72

    Google Scholar 

  • Seredin, V. V., Finkelman, R. B., 2008. Metalliferous Coals: A Review of the Main Genetic and Geochemical Types. International Journal of Coal Geology, 76(4): 253–289. https://doi.org/10.1016/j.coal.2008.07.016

    Article  Google Scholar 

  • Shawe, D. R., 2011. Uranium-Vanadium Deposits of the Slick Rock District. U.S. Geological Survey Professional Paper 576-F, Colorado

  • Shmariovich, Y. M., Natal’Chenko, B. I., Brovin, K. G., 1988. Conditions of Formation of Multi-Element Stratabound Infiltrational Mineral Deposits. International Geology Review, 30(6): 668–675. https://doi.org/10.1080/00206818809466047

    Article  Google Scholar 

  • Sibson, R. H., Moore, J. M. M., Rankin, A. H., 1975. Seismic Pumping—A Hydrothermal Fluid Transport Mechanism. Journal of the Geological Society, 131(6): 653–659. https://doi.org/10.1144/gsjgs.131.6.0653

    Article  Google Scholar 

  • Skirrow, R. G., Mercadier, J., Armstrong, R., et al., 2016. The Ranger Uranium Deposit, Northern Australia: Timing Constraints, Regional and Ore-Related Alteration, and Genetic Implications for Unconformity-Related Mineralisation. Ore Geology Reviews, 76: 463–503. https://doi.org/10.1016/j.oregeorev.2015.09.001

    Article  Google Scholar 

  • Sozinov, N. A., 1966. Uranium-Germanium Ore in Miocene Coal-Bearing Strata. Materialy Koordinatsionnogo Soveta, Vol. 2. VIMS, Moscow. 55–59 (in Russian)

    Google Scholar 

  • Thomas, P. K., Thomas, T., Thomas, J., et al., 2014. Role of Hydrothermal Activity in Uranium Mineralisation in Palnad Sub-Basin, Cuddapah Basin, India. Journal of Asian Earth Sciences, 91: 280–288. https://doi.org/10.1016/j.jseaes.2014.02.013

    Article  Google Scholar 

  • Turner-Peterson, C. E., Fishman, N. S., 1986. Geologic Synthesis and Genetic Models for Uranium Mineralization in the Morrison Formation, Grants Uranium Region, New Mexico. A Basin Analysis Case Study. American Association of Petroleum Geologists, 1986: 357–388. https://doi.org/10.1306/st22455c21

    Google Scholar 

  • Valsardieu, C., 1971. Cadre Géologique et Paléogéographique des Minéralisations de Charbon, de Cuivre et d’uranium de la Région d’Agadès (République du Niger): [Dissertation], Nice University, Nice. 518

    Google Scholar 

  • Velichkin, V. I., Kushnerenko, V. K., Tarasov, N. N., et al., 2005. Geology and Formation Conditions of the Karku Unconformity-Type Deposit in the Northern Ladoga Region (Russia). Geology of Ore Deposits, 47(2): 87–112

    Google Scholar 

  • Verma, M. B., Maithani, P. B., Chaki, A., et al., 2009. Srisailam Sub-Basin, a Uranium Province of Unconformity-Related Deposits in Andhra Pradesh Case Study of Chitrial Uranium Exploration, Nalgonda District, Current Science, 96(4): 588–591

    Google Scholar 

  • Weber, F., 1968. Une Série Précambrienne du Gabon: le Francevillien. Sédimentologie, Géochimie, Relations avec les Gîtes Minéraux Associés. Mémoire Service Carte Géologique de l’Alsace Lorraine, 28: 238

    Google Scholar 

  • Weissmann, G. S., Hartley, A. J., Scuderi, L. A., et al., 2013. Prograding Distributive Fluvial Systems—Geomorphic Models and Ancient Examples. New Frontiers in Paleopedology and Terrestrial Paleoclimatology: Paleosols and Soil Surface Analog Systems. Society for Sedimentary Geology, 104: 131–147. https://doi.org/10.2110/sepmsp.104.16

    Google Scholar 

  • Wenrich, K. J., Lach, P., Cuney, M., 2018. Rare-Earth Elements in Uraninite-Breccia Pipe Uranium District, Northern Arizona, USA. International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2018), IAEA, Vienna

    Google Scholar 

  • Wenrich, K. J., Titley, S. R., 2008. Uranium Exploration for Northern Arizona (USA) Breccia Pipes in the 21st Century and Consideration of Genetic Models. In: Spencer, J. E., Titley, S. R., eds., Ores and Orogenesis: Circum-Pacific Tectonics, Geologic Evolution, and Ore Deposits. Arizona Geological Society Digest, 22: 295e309

  • Wülser, P. A., Brugger, J., Foden, J., et al., 2011. The Sandstone-Hosted Beverley Uranium Deposit, Lake Frome Basin, South Australia: Mineralogy, Geochemistry, and a Time-Constrained Model for Its Genesis. Economic Geology, 106(5): 835–867. https://doi.org/10.2113/econgeo.106.5.835

    Article  Google Scholar 

  • Yang, D. G., Wu, J. H., Nie, F. J., et al., 2020. Petrogenetic Constraints of Early Cenozoic Mafic Rocks in the Southwest Songliao Basin, NE China: Implications for the Genesis of Sandstone-Hosted Qianjiadian Uranium Deposits. Minerals, 10(11): 1014. https://doi.org/10.3390/min10111014

    Article  Google Scholar 

  • Young, R. G., 1964. Distribution of Uranium Deposits in the White Canyon-Monument Valley District, Utah-Arizona. Economic Geology, 59(5): 850–873. https://doi.org/10.2113/gsecongeo.59.5.850

    Article  Google Scholar 

  • Zhang, C. Y., Nie, F. J., Jiao, Y. Q., et al., 2019. Characterization of Ore-Forming Fluids in the Tamusu Sandstone-Type Uranium Deposit, Bayingobi Basin, China: Constraints from Trace Elements, Fluid Inclusions and C-O-S Isotopes. Ore Geology Reviews, 111: 102999. https://doi.org/10.1016/j.oregeorev.2019.102999

    Article  Google Scholar 

  • Zhang, L., Liu, C. Y., Fayek, M., et al., 2017. Hydrothermal Mineralization in the Sandstone-Hosted Hangjinqi Uranium Deposit, North Ordos Basin, China. Ore Geology Reviews, 80: 103–115. https://doi.org/10.1016/j.oregeorev.2016.06.012

    Article  Google Scholar 

  • Zhang, L., Liu, C. Y., Lei, K. Y., 2019. Green Altered Sandstone Related to Hydrocarbon Migration from the Uranium Deposits in the Northern Ordos Basin, China. Ore Geology Reviews, 109: 482–493. https://doi.org/10.1016/j.oregeorev.2019.05.008

    Article  Google Scholar 

  • Zhao, L., Cai, C. F., Jin, R. S., et al., 2018. Mineralogical and Geochemical Evidence for Biogenic and Petroleum-Related Uranium Mineralization in the Qianjiadian Deposit, NE China. Ore Geology Reviews, 101: 273–292. https://doi.org/10.1016/j.oregeorev.2018.07.025

    Article  Google Scholar 

  • Zielinski, R. A., 1983. Tuffaceous Sediments as Source Rocks for Uranium: A Case Study of the White River Formation, Wyoming. Journal of Geochemical Exploration, 18(3): 285–306. https://doi.org/10.1016/0375-6742(83)90074-2

    Article  Google Scholar 

Download references

Acknowledgments

The authors are particularly grateful to the uranium exploration companies (especially ORANO and CAMECO) for the discussions, financial support and providing access to their properties. Patrice Bruneton is warmly thanked for a thorought revision of the manuscript. This paper is a contribution to the IGCP project 675 “Comparative analysis of mineralization of Sandstone-type U deposits”. The final publication is available at Springer via https://doi.org/10.1007/s12583-021-1532-x.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Cuney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuney, M., Mercadier, J. & Bonnetti, C. Classification of Sandstone-Related Uranium Deposits. J. Earth Sci. 33, 236–256 (2022). https://doi.org/10.1007/s12583-021-1532-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-021-1532-x

Key Words

Navigation