Skip to main content
Log in

Geology, geochemistry and mineralogy of the lignite-hosted Ambassador palaeochannel uranium and multi-element deposit, Gunbarrel Basin, Western Australia

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Ambassador U and multi-element deposit occurs on the SW margin of the Gunbarrel Basin, Western Australia. Low-grade, flat-lying U mineralization averaging about 2 m thick at 0.03% U occurs in lignites at the redox front at the base of the weathering profile within a laterally extensive palaeochannel network. Uranium is principally associated with organic matter within the lignitic matrix, although rare discrete U minerals, such as coffinite and uraninite, are also present. The lignite is also enriched in a suite of other elements, principally base metals and sulphur, with concentrations of 0.3 ≥ 1% Cu, Pb, Ni, Co, Zn and total rare earth elements (REE) in some samples. Other element enrichments include: Cr, Cs, Sc, Se, Ta, Ti, Th, V and Zr as detrital heavy minerals of Zr, Ti and REE (oxides and silicates) or authigenic minerals of Cu, Bi, Pb, Zn, Ni, Se, Hg, Ti, Cr, Tl, V, U and REE (sulphides, vanadates, selenides, oxides, chlorides and native metals) and diffuse lignite impregnations. The Ambassador deposit probably formed from the convergence of redox-active weathering processes to unique source/host rocks, constrained within the palaeochannel. A proximal source of U and trace elements of lamproite/carbonatite origin is probable, as constrained by U–Pb isotope and U–Th disequilibria studies. Uranium and other metals were precipitated syngenetically with organic matter as it was deposited during a humid phase in the Late Eocene. Remobilization subsequently concentrated the metals in the upper 2 m of the lignite. This may have occurred during one or more periods of weathering and associated diagenesis, with the latest episode in the last 300,000 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ahmad MU, Finlay RW (1987) Radioactivity in the Hocking River Basin. In: Graves B (ed) Radon, radium and other radioactivity in groundwater. Lewis Publishers, USA, pp 153–170

    Google Scholar 

  • Aitken GG, McNight DM, Wershaw RL, McCarthy P (eds) (1985) Humic substances in soil, sediment and water. Wiley, New York, p 692

    Google Scholar 

  • Akagawa F, Yoshida H, Yogo S, Yamamoto K (2004) Redox reaction along a groundwater conducting fracture and secondary elemental migration in granitic rock:-analogue of long-term contaminant migration and fixation in geological environment. J Geol Soc Jap 110:671–685

    Article  Google Scholar 

  • Aura Energy (2009) Available at: http://www.auraenergy.com.au/assets/11082009_-_Junction_U_discovery.pdf

  • Bertha EL, Choppin GR (1978) Interaction of humic and fulvic acids with Eu (III) and Am (III). J Inorg Nucl Chem 40:655–658

    Article  Google Scholar 

  • Binks PJ, Hooper GJ (1984) Uranium in tertiary palaeochannels-West Coast Area, South Australia. Proc Australas Inst Min Metall 289:271–275

    Google Scholar 

  • Bouska V (1981) Geochemistry of Coal. Elsevier, Amsterdam, p 281

    Google Scholar 

  • Boyle RW (1982) Geochemical prospecting for thorium and uranium deposits. Elsevier, Amsterdam, p 498

    Google Scholar 

  • Braun JJ, Viers J, Dupre B, Polve M, Ndam J, Muller P (1998) Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: the implication for the present dynamics of the soil covers of the humid tropical regions—constraints required by coupled dissolution and pseudomorphic replacement. Geochim Cosmochim Acta 62:273–299

    Article  Google Scholar 

  • Brookins DG (1988) Eh-pH Diagrams for geochemistry. Springer, Berlin, p 176

    Google Scholar 

  • Butt CRM, Gole MJ (1985) Helium in soil and overburden gas as an exploration pathfinder—an assessment. J Geochem Explor 24:141–173

    Article  Google Scholar 

  • Butt CRM (1988) Major uranium provinces: Yilgarn Block and Gascoyne Province, Western Australia, 1985. In: Recognition of Uranium Provinces. IAEA, Vienna. pp 273–304

  • Clarke JDA (1993) Stratigraphy of the Lefroy and Cowan palaeodrainages. West Aust J R Soc West Aust 76:13–23

    Google Scholar 

  • Clarke JDA (1994) Evolution of the Lefroy and Cowan palaeodrainages, Western Australia. Aust J Earth Sci 41:55–68

    Article  Google Scholar 

  • Casagrande DJ, Siefert K, Berschinski C, Sutton N (1977) Sulfur in peat-forming systems of the Okefenokee Swamp and Florida Everglades: origins of sulfur in coal. Geochim Cosmochim Acta 41:161–167

    Article  Google Scholar 

  • Church TM, Sarin MM, Fleisher MQ, Ferdelman TG (1996) Salt marshes: an important coastal sink for dissolved uranium. Geochim Cosmochim Acta 60:3879–3887

    Article  Google Scholar 

  • Descostes M, Schlege ML, Eglizaud N, Descamps F, Miserque F, Simoni E (2010) Uptake of uranium and trace elements in pyrite (FeS2) suspensions. Geochim Cosmochim Acta 74:1551–1562

    Article  Google Scholar 

  • Dionex (1985) Technical note 16. (PO Box 3603 Sunnyvale, California, USA)

  • Disnar JR (1981) Etude experimental de la fixation de metaux par un materiau sedimentaire actuel d’origine algire-II. Fixation’in vitro’ de \( {\text{UO}}_2^{{2 + }} \), Cu2+, Ni2+, Pb2+, Co2+, Mn2+, ainsi que de \( {\text{VO}}_3^{ - } \), \( {\text{Mo}}_4^{{2 - }} \) et \( {\text{Ge}}_3^{{2 - }} \). Geochim Cosmochim Acta 45: 363–379

  • Douglas GB, Butt CRM, Gray DG (2005) Mulga Rock uranium and multi-element deposits, officer Basin, WA. In: Butt CRM, Roberston IDM, Scott KM, Cornelius M (eds) Regolith expression of australian ore systems. CRC LEME, Perth, pp 415–417

    Google Scholar 

  • Douglas GB, Gray DJ, Butt CRM (1993) Geochemistry, mineralogy and hydrogeochemistry of the ambassador multi-element lignite deposit, Western Australia. Rep no. 108 Min Energ Res Inst West Aust. p 85

  • Douglas GB, Hart BT, Beckett R, Gray CM (1999) Geochemistry of suspended particulate matter (SPM) in the Murray-Darling River system: a conceptual isotopic and geochemical model for the fractionation of major, trace and rare earth elements. Aquat Geochem 5:167–194

    Article  Google Scholar 

  • Eakin P, Gize AP (1992) Reflected-light microscopy of uraniferous bitumens. Min Mag 56:85–99

    Article  Google Scholar 

  • Ellsworth HV (1928) Thucolite-a remarkable primary carbon mineral from the vicinity of Parry Sound, Ontario. Am Min 13:419–441

    Google Scholar 

  • Energy Minerals Australia. (2010) Progressing development of mulga rock. Presentation by EMA to Australian uranium summit, Perth, Western Australia, 10 May, 2010

  • Finkelman RB (1988) The inorganic geochemistry of coal: a scanning electron microscopy view. Scan Microsc 2:97–105

    Google Scholar 

  • Fulwood KE, Barwick RE (1990) Mulga rock uranium deposits, officer Basin. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. The Australasian Institute of Mining and Metallurgy, Melbourne, pp 1621–1623

    Google Scholar 

  • Gaffney JS, Marley NA, Orlandin KA (1992) Evidence for thorium isotopic disequilibria due to organic complexation in natural waters. Env Sci Tech 26:1248–1250

    Article  Google Scholar 

  • Gat JR, Gonfiantini R (1981) Stable isotope hydrology. Deuterium and oxygen-18 in the water cycle. Tech. rep. series no. 210, IAEA, Vienna 1981, ISBN 92-0-145281-0

  • Giesy JP, Geiger RA, Kevern NR (1986) UO 2+2 -humate interactions in soft, acid, humate-rich waters. J Environ Radioact 4:39–64

    Article  Google Scholar 

  • Goldhaber MB, Hemingway BS, Monahageghi A, Reynold RL, Northro HR (1987) Origin of coffinite in sedimentary rocks by a sequential adsorption-reduction mechanism. Bull Min 110:131–144

    Google Scholar 

  • Gray DJ (2001) Hydrogeochemistry in the Yilgarn Craton. Geochem Expl Env Anal 1:253–264

    Article  Google Scholar 

  • Gray DJ (1998) Hydrogeochemistry in the Mount Gibson gold district. CRC LEME open file rep 21. p 80

  • Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Montocello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709

    Article  Google Scholar 

  • Griffin TJ (1990) Eastern goldfields Province. In: Geology and mineral resources of Western Australia. West Aust Geol Surv, Mem 3: 77–117

  • Gulson BL, Mizon KJ (1980) Lead isotope studies at Jabiluka. In: Ferguson, J, Goleby, AB (ed) Uranium in the Pine Creek Geosyncline. IAEA. pp 439–455

  • Hansley PL, Spirakas CS (1992) Organic matter diagenesis as the key to a unifying theory for the genesis of tabular uranium-vanadium deposits in the Morrison Formation, Colorado Plateau. Econ Geol 87:352–365

    Article  Google Scholar 

  • Hart MKW (1989) Analysis for total iron, chromium, vanadium and titanium in varying matrix geological samples by XRF, using pressed powder samples. Standards in X-ray analysis. Fifth State Conference. Australian X-ray analytical association (WA Branch). pp 117–129

  • Hart BT, Douglas GB, Beckett R, Van Put A, Van Grieken RE (1993) Characterization of colloidal and particulate matter transported by the Magela Creek system, northern Australia. Hydrol Proced 7:105–118

    Article  Google Scholar 

  • Hau B, Fabris AJ, Keeling JL, Fairclough MC (2007) Cainozoic palaeochannel-hosted uranium and current exploration methods, South Australia. MESA J 46:34–39

    Google Scholar 

  • Idiz EF, Carlisle D, Kaplan IR (1986) Interaction between organic matter trace metals in a uranium rich bog, Kern County, California, USA. Appl Geochem 1:573–590

    Article  Google Scholar 

  • Ilger JD, Ilger WA, Zingaro RA, Mohan MS (1988) Modes of occurrence of uranium in Carbonaceous uranium deposits: characterization of uranium in a south Texas (USA) lignite. Chem Geol 63:197–216

    Article  Google Scholar 

  • Islam MA (1983) Palynological report on samples from the western Eucla Basin. Rep no. R12/83/1. ECL Australia Pty. Ltd

  • Johnson SY, Otton JK, Macke DL (1987) Geology of the holocene surficial uranium deposit of the north fork of Flodelle Creek, northeastern Washington. Geol Soc Am Bull 98:77–85

    Article  Google Scholar 

  • Just J (1988) Report on mineralogical investigation of samples from drill holes CD-795, CD-1101 and CD-1406, prepared for PNC Exploration (Australia) Pty. Ltd. (unpublished)

  • Kalin M, Wheeler WN, Meinrath G (2004) The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioact 78:151–177

    Article  Google Scholar 

  • Kern AM, Commander P (1993) Cainozoic stratigraphy in the Roe Palaeodrainage of the Kalgoorlie region. Geological Survey of Western Australian Professional Paper no. 34

  • Korsch MJ, Gulson BL (1986) Nd and Pb isotopic studies of an archaean layered mafic-ultramafic complex, Western Australia, and implications for mantle heterogeneity. Geochim Cosmochim Acta 50:1–11

    Article  Google Scholar 

  • Landais P (1986) Analyse des matieres organiques associees aux minerlisations uraniferes: implications genetiques. Geol Geochim Uranium Mem 10:1–257

    Google Scholar 

  • Landais P (1991) Analysis of bitumens associated with uranium ores. In: Pagel M, Leroy JL (eds) Source, transport and deposition of metals. Balkema, Rotterdam, pp 549–552

    Google Scholar 

  • Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42:547–569

    Article  Google Scholar 

  • Le Roux JP (1991) Flume experiments on permeability and organic matter as related to the genesis of uranium deposits in the Beaufort Group. Sa J Geol 94:212–219

    Google Scholar 

  • Leventhal JS, Daws EA, Frye JS (1986) Organic geochemical analysis of sedimentary organic matter associated with uranium. Appl Geochem 1:241–247

    Article  Google Scholar 

  • Lewis JD 1990 Diatremes. In: The geology and mineral resources of Western Australia, Chapter 5. West Aust Geol Surv, Mem 3: 590

  • Li WC, Victor DM, Chakrabarti CL (1980) Effect of pH and uranium concentration on the interaction of uranium (VI) and uranium (IV) with organic ligands in aqueous solutions. Anal Chem 52:520–523

    Article  Google Scholar 

  • Lieser KH, Hill R (1992) Hydrolysis and colloid formation of thorium in water and consequences for its migration behaviour-comparison with uranium. Radiochim Acta 56:37–45

    Google Scholar 

  • Macaskie LE, Empson RM, Cheetham AK, Grey CP, Skarnulis J (1992) Uranium bioaccumulation by a citrobacter sp. as a result of enzymically mediated growth of polycystalline HUO2PO4. Sci 257:782–784

    Article  Google Scholar 

  • Manhattan Corporation Limited (2010) Presentation to Australian Uranium Conference Online. Available at: http://manhattancorp.com.au/upload/documents/investor/presentations/20100921_AustralianUraniumConference22Jul10.pdf

  • Mann AW, Deutscher RL (1978) Genesis principles for the precipitation of carnotite in calcrete drainages in Western Australia. Econ Geol 73:1724–1737

    Article  Google Scholar 

  • MacFarlane I, Inwood N (2010) Mulga rock project—ambassador uranium deposit, June 2010 resource estimate. 63 pp + appendices (unpublished). Available at: http://www.eama.com.au/projects/reports/ Accessed February 2011

  • McIntrye NS, Martin RB, Chauvin WJ, Winder CG, Brown JR, MacPhee JA (1985) Studies of elemental distributions within discrete coal macerals. Use of secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Fuel 64:1705–1712

    Article  Google Scholar 

  • McMahon PB, Chapelle FH (1991) Microbial production of organic acids in aqiutard sediments and its role in aqiufer geochemistry. Nature 349:233–235

    Article  Google Scholar 

  • Mandal R, Salam MS, Murimboh J, Hassan NM, Chakrabarti CL, Back MH, Gregoire DC (2000) Competition of Ca(II) Mg(II) with Ni(II) for binding by a well-characterized fulvic acid in model solutions. Env Sci Tech 34:2201–2208

    Article  Google Scholar 

  • Meunier JD, Landais P, Pagel M (1990) Experimental evidence of uraninite formation from the diagenesis of uranium-rich organic matter. Geochim Cosmochim Acta 54:809–817

    Article  Google Scholar 

  • Meunier JD (1991) Diagenesis mechanisms of uranium accumulation by detrital organic matter. In: Pagel M, Leroy JL (eds) Source, transport and deposition of metals. Balkema, Rotterdam, pp 565–568

    Google Scholar 

  • Meunier JD, Trouiller A, Bruhlet J, Pagel M (1989) Uranium and organic matter in a palaeodeltaic environment: the Coutras deposit (Gironde, France). Econ Geol 84:1541–1556

    Article  Google Scholar 

  • Mindax (2010). Quarterly activities report, April 2010 Mindax Limited. pp. 9–10 Online. Available at: http://mindax.com.au

  • Mitchell RH (1989) Aspects of the petrology of kimberlites and lamproites: some definitions and distinctions. In: Kimberlites 1. Kimberlites and related rocks. Geol Soc Aust Spec Publ. pp 7–45

  • Monagheghi A, Updegraff DM, Goldhaber MB (1985) The role of sulfate-reducing bacteria in the deposition of sedimentary uranium ores. Geomicro 4:153–173

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  Google Scholar 

  • Nakashima S, Disnar JR, Perruchot A, Trichet J (1984) Experimental study of mechanisms of fixation and reduction of uranium by sedimentary organic matter under diagenetic or hydrothermal conditions. Geochim Cosmochim Acta 48:2321–2329

    Article  Google Scholar 

  • Nash K, Fried S, Friedman AM, Sullivan JC (1981) Redox behavior, complexing, and adsorption of hexavalent actinides by humic acid and selected clays. Env Sci Tech 15:834–837

    Article  Google Scholar 

  • Nelson DR, Chivas AR, Chappell BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim Cosmochim Acta 52:1–17

    Article  Google Scholar 

  • Nelson DR, McCulloch MT (1989) Enriched mantle components and mantle recycling of sediments. In: Kimberlites and related rocks, vol 1. Geol Soc Aust Sp Pub no. 14. Blackwell, Melbourne. p 646

  • Nissenbaum A, Kaplan IR (1972) Chemical and isotopic evidence for the in situ origin of marine humic substances. Limnol Oceanogr 17:570–582

    Article  Google Scholar 

  • Norrish K, Chappell BW (1977) X-ray fluorescence spectrometry. In: Zussman J (ed) Physical methods in determinative mineralogy. Academic, London, pp 201–272

    Google Scholar 

  • Parkhurst DL, Thorstenson DC, Plummer LN (1980) PHREEQE, a computer program for geochemical calculations. USGS Wat Res Inv 80–96: 210

  • Parnell J (1988) Mineralogy of uraniferous hydrocarbons in carboniferous-hosted mineral deposits, Great Britain. Uran 4:197–218

    Google Scholar 

  • Petrova LS, Ye Chistilin P (1987) Electron-microscope data on the mechanism of epigenetic uranium mineralization. Int Geol Rev 29:185–192

    Article  Google Scholar 

  • Plummer LN, Parkhurst DL (1990) Application of the Pitzer equations to the PHREEQE geochemical model. In: Melchior DC, Bassett RL (Ed) Chemical modeling of aqueous systems II: Am Chem Soc Symp Ser 416, Washington. pp 128–137

  • Pointer CM, Ashworth JR, Simpson PR (1989) Genesis of coffinite and the U-Ti association in lower old red sandstone sediments, Ousdale, Caithness, Scotland. Miner Depos 24:117–123

    Article  Google Scholar 

  • Ralston IT, Levinson AA, Harmon RS (1986) Uranium series disequilibrium in young lacustrine sediments from an arid environment at Henkries, Republic of South Africa. Appl Geochem 1:535–548

    Article  Google Scholar 

  • Raymond R Jr, Gladney ES, Bish DL, Cohen AD, Maestas LM (1990) Variation of inorganic content of peat with depositional and ecological setting. Geol Soc Am Sp Pap 248:1–12

    Google Scholar 

  • Read D, Bennett D, Hooker PJ, Ivanovich M, Longworth G, Milodowski AE, Noy DJ (1993) The migration of uranium into peat rich soils at Broubster, Caithness, Scotland. J Contam Hydrol 13:291–308

    Article  Google Scholar 

  • Regenspurg S, Margot-Roquier C, Harfouche M, Froidevaux P, Steinmann P, Junier P, Bernier-Latmani R (2010) Speciation of naturally-accumulated uranium in an organic-rich soil of an alpine region (Switzerland). Geochim Cosmochim Acta 74:2082–2098

    Article  Google Scholar 

  • Reynolds RL, Goldhaber ME (1978) Origin of a South Texas roll-type uranium deposit: 1. Alteration of iron-titanuim oxide minerals. Econ Geol 73:1677–1689

    Article  Google Scholar 

  • Schmeide K, Sachs S, Bubner M, Reich T, Heise KH, Bernhard G (2003) Interaction of uranium(VI) with various modified and unmodified natural and synthetic humic substances studied by EXAFS and FTIR spectroscopy. Inorg Chim Acta 351:133–140

    Article  Google Scholar 

  • Shanbhag PM, Choppin GR (1981a) Binding of calcium by humic acid. J Inorg Nucl Chem 43:921–922

    Article  Google Scholar 

  • Shanbhag PM, Choppin GR (1981b) Binding of uranyl by humic acid. J Inorg Nucl Chem 43:3369–3372

    Article  Google Scholar 

  • Short SA, Lowson RT, Ellis J (1988) 234U/238U and 230Th/234U activity ratios in the colloidal phases of aquifers in lateritic weathered zones. Geochim Cosmochim Acta 28:1605–1614

    Google Scholar 

  • Sikora LJ, Keeney DR (1983) Further aspects of soil chemistry under anaerobic conditions. In: Gore AJP (ed) Ecosystems of the world. Elsevier, Amsterdam, pp 247–256

    Google Scholar 

  • Stach E (1982) Textbook of coal petrology gebr. Borntraeger Verlagsbuchhandlung, Stuttgart. p 535

  • Stevenson FJ (1985) Geochemistry of soil humic substances. In: Aitken GR, McKnight DM, Wershaw RL (eds) Humic substances in soil, sediment and water. Wiley, New York, p 692

    Google Scholar 

  • Swaine DJ (1990) Trace elements in coal. Butterworth, London, p 278

    Google Scholar 

  • Szalay A (1964) Cation exchange properties of humic acids and their importance in the geochemical enrichment of \( {\text{UO}}_2^{{2 + }} \) and other cations. Geochim Cosmochim Acta 52:2555–2563

    Google Scholar 

  • Theng BKG (1974) The chemistry of clay-organic reactions. Hilger, London, p 343

    Google Scholar 

  • Tsezos M, Volesky B (1982) The mechanism of uranium biosorption by rhizopus arrhizus. Biotech Bioeng 24:385–401

    Article  Google Scholar 

  • Turner JV, Townley LR, Rosen MR Milligan N (1994) Groundwater recharge to paleochannel aquifers in the Eastern Goldfields of Western Australia. In: Water Down Under’94, Adl, Aust, 21–25 Nov, 1994, IAH/IEAust. pp 511–516

  • Van Derweijden CH, Van Leeuwin M (1985) The effect of pH on the adsorption of uranyl onto peat. Uran 2:59–66

    Google Scholar 

  • Van Krevelen DW (1963) Geochemistry of coal. In: Ingerson E (ed) Organic geochemistry. Pergamon Press, Oxford, pp 183–247

    Google Scholar 

  • Vassiliou AH (1986) The form of occurrence of uranium in deposits associated with organic matter. Econ Geol 75:605–617

    Google Scholar 

  • Ward CR (1985) Coal geology and coal technology. Blackwell, Melbourne, p 352

    Google Scholar 

  • Weast RC, Astle MJ, Beyer WH (1997) CRC Handbook of chemistry and physics. F-154 elements in sea water, 77th edn. CRC Press, Florida, pp 14–14

    Google Scholar 

  • Wersin P, Hochella MF Jr, Persson P, Redden G, Leckie JO, Harris DW (1994) Interaction between aqueous uranium (VI) and sulfide minerals: spectroscopic evidence for sorption and reduction. Geochim Cosmochim Acta 58:2829–2843

    Article  Google Scholar 

  • Wilson MA (1987) NMR techniques and applications in geochemistry and soil chemistry. Pergamon Press, Sydney, p 353

    Google Scholar 

  • Wellin E (1966) The occurrence of asphaltite and thucloite in Precambrian rock of Sweden. Geol Foeren Stockh Forh 87:509–526

    Google Scholar 

  • Zielinski RA, Otton JJ, Wanty RB, Pierson CT (1987) The geochemistry of water near a surficial organic-rich uranium deposit, northeastern Washington State, USA. Chem Geol 62:263–289

    Article  Google Scholar 

  • Zielinski RA, Meier AL (1988) The association of uranium with organic matter in peat: an experimental leaching study. Appl Geochem 3:631–643

    Article  Google Scholar 

Download references

Acknowledgements

A number of present and former staff from CSIRO are acknowledged. These include A.Z. Gedeon and M. Pascoe (initial data compilation and SEM analyses), R. Bilz and J. Crabb (sample preparation) and M.K.W Hart and M. Cheeseman (XRF analysis). J. Turner is thanked for the groundwater isotopic analyses, G.R. Carr and D. Whitford for the Sr, Nd and Pb isotopic analyses and D.G. Longman for laboratory assistance. The project received logistical and financial support from PNC Exploration Ltd. and MERIWA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant B. Douglas.

Additional information

Editorial handling: M. Cuney

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglas, G.B., Butt, C.R.M. & Gray, D.J. Geology, geochemistry and mineralogy of the lignite-hosted Ambassador palaeochannel uranium and multi-element deposit, Gunbarrel Basin, Western Australia. Miner Deposita 46, 761–787 (2011). https://doi.org/10.1007/s00126-011-0349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-011-0349-4

Keywords

Navigation