Skip to main content
Log in

Fatigue life prediction in nickel-based superalloys using unified mechanics theory

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Under strain-controlled cyclic loading at elevated temperature (650 °C), the low-cycle fatigue behavior of an advanced nickel-based superalloy (RR1000) has been studied. In the current study, a unified mechanics theory (UMT)-based model is presented and applied to predict the fatigue life of nickel-based superalloy (RR1000). Entropy is used as a damage metric in the fatigue life prediction of material in the present study. The entropy generation rate under the mechanical loading conditions is calculated by considering plastic deformation as the governing mechanism for dissipation. Using the UMT, damage in nickel-based superalloy (RR1000) is evaluated to predict low-cycle fatigue life. Also, the stress–strain hysteresis loop prediction has been done at any strain amplitude without making use of curve-fitting phenomenological models. The hysteresis loops can be predicted at any given number of cycles for all strain amplitudes using UMT without doing complete fatigue experiments, which in turn reduces the efforts and costs of the cumbersome fatigue experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Santecchia, E., Hamouda, A.M.S., Musharavati, F., Zalnezhad, E., Cabibbo, M., El Mehtedi, M., Spigarelli, S.: A review on fatigue life prediction methods for metals. Adv. Mater. Sci. Eng. 2016, 1–26 (2016)

    Article  Google Scholar 

  2. Pretty, C.J., Whitaker, M.T., Williams, S.J.: Thermo-mechanical fatigue crack growth of RR1000. Materials 10(1), 34 (2017)

    Article  Google Scholar 

  3. Child, D.J., Meldrum, J., Onwuarolu, P.: Corrosion-fatigue testing of Ni-based superalloy RR1000. Mater. Sci. Technol. (United Kingdom) 33, 1040–1047 (2017). https://doi.org/10.1080/02670836.2016.1242827

    Article  Google Scholar 

  4. Silva, J.M., Cláudio, R.A., Sousa E Brito, A., Branco, C.M., Byrne, J.: Characterization of Powder Metallurgy (PM) nickel base superalloys for aeronautical applications. Mater. Sci. Forum. 514–516, 495–499 (2006). https://doi.org/10.4028/www.scientific.net/msf.514-516.495

  5. Cheng, A.S., Laird, C.: Fatigue life behaviour of copper single crystals. Part I and II. Fatigue Engng. Mater. Struct. 4, 331–353 (1981)

    Article  Google Scholar 

  6. Tanaka, K., Mura, T.: A dislocation model for fatigue crack initiation 48, 97–103 (1981)

    Google Scholar 

  7. Smith, K.N., Topper, T.H., Watson, P.: A stress–strain function for the fatigue of metals (stress-strain function for metal fatigue including mean stress effect). J Mater. 5, 767–778 (1970). https://doi.org/10.1179/1752270612Y.0000000008

    Article  Google Scholar 

  8. Ontiveros, V., Amiri, M., Kahirdeh, A., Modarres, M.: Thermodynamic entropy generation in the course of the fatigue crack initiation. Fatigue Fract. Eng. Mater. Struct. 40, 423–434 (2017). https://doi.org/10.1111/ffe.12506

    Article  Google Scholar 

  9. Harvey, S.E., Marsh, P.G., Gerberich, W.W.: Atomic force microscopy and modeling of fatigue crack initiation in metals. Acta Metall. Mater. 42, 3493–3502 (1994). https://doi.org/10.1016/0956-7151(94)90481-2

    Article  Google Scholar 

  10. Ren, Y.M., Lin, X., Guo, P.F., Yang, H.O., Tan, H., Chen, J., Li, J., Zhang, Y.Y., Huang, W.D.: Low cycle fatigue properties of Ti-6Al-4V alloy fabricated by high-power laser directed energy deposition: experimental and prediction. Int. J. Fatigue. 127, 58–73 (2019). https://doi.org/10.1016/j.ijfatigue.2019.05.035

    Article  Google Scholar 

  11. Kumar, J., Sundara Raman, S.G., Kumar, V.: Analysis and modeling of thermal signatures for fatigue damage characterization in Ti–6Al–4V titanium alloy. J. Nondestruct. Eval. 35, 1–10 (2016). https://doi.org/10.1007/s10921-015-0317-5

    Article  Google Scholar 

  12. Boltzmann, L.: Ableitung des Stefan’schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie. Ann. Phys. (1884). https://doi.org/10.1002/andp.18842580616

    Article  Google Scholar 

  13. Basaran, Cemal, Y.: A Thermodynamic Framework for Damage Mechanics of Solder Joint. J. Electron. Packag. Trans. ASME. 120, 379–384 (1998)

  14. Basaran, C.: Entropy based fatigue, fracture, failure prediction and structural health monitoring. Entropy 22, 1–4 (2020). https://doi.org/10.3390/e22101178

    Article  Google Scholar 

  15. Basaran, C.: Introduction to Unified Mechanics Theory with Applications.

  16. Bin Jamal M, N., Kumar, A., Lakshmana Rao, C., & Basaran, C. (2020). Low cycle fatigue life prediction using unified mechanics theory in Ti-6Al-4V alloys. Entropy, 22(1), 24.

  17. Bin, N., Jamal, M., Rao, C.L., Basaran, C.: A unified mechanics theory-based model for temperature and strain rate dependent proportionality limit stress of mild steel. Mech. Mater. 155, 103762 (2021). https://doi.org/10.1016/j.mechmat.2021.103762

    Article  Google Scholar 

  18. Basaran, C., Nie, S.: An irreversible thermodynamics theory for damage mechanics of solids. Int. J. Damage Mech. 13, 205–223 (2004). https://doi.org/10.1177/1056789504041058

    Article  Google Scholar 

  19. Basaran, C.: Introduction to Unified Mechanics Theory with Applications. Springer International Publishing

  20. Zhao, L.G., Tong, J., Vermeulen, B., Byrne, J.: On the uniaxial mechanical behaviour of an advanced nickel base superalloy at high temperature. Mech. Mater. 33, 593–600 (2001). https://doi.org/10.1016/S0167-6636(01)00071-0

    Article  Google Scholar 

  21. Temfack, T., Basaran, C.: Experimental verification of thermodynamic fatigue life prediction model using entropy as damage metric. Mater. Sci. Technol. (United Kingdom) 31, 1627–1632 (2015). https://doi.org/10.1179/1743284715Y.0000000074

    Article  Google Scholar 

  22. Peressini, A.L., Uhl, J.J., Sullivan, F.E.: Least Squares Optimization. 133–155 (1988). https://doi.org/10.1007/978-1-4612-1025-2_4

Download references

Acknowledgements

The authors would like to thank the specific lab of Defence Metallurgical Research Laboratory (DMRL), Defence Research and Development Organization (DRDO), India, for funding the current work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmana Rao Chebolu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Jamal Mankarathodi, N.B. & Chebolu, L.R. Fatigue life prediction in nickel-based superalloys using unified mechanics theory. Int J Adv Eng Sci Appl Math 13, 360–367 (2021). https://doi.org/10.1007/s12572-021-00296-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-021-00296-8

Keywords

Navigation