Skip to main content

Advertisement

Log in

Analysis and Modeling of Thermal Signatures for Fatigue Damage Characterization in Ti–6Al–4V Titanium Alloy

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Low cycle fatigue (LCF) damage in titanium alloys has been traditionally assessed based on driving parameters such as stress, strain or hysteresis energy. These mechanical parameters sometimes fail to quantify the true contribution of stored damage energy which is the main cause of LCF damage in these alloys. Hence in the present investigation, thermal evolution captured on-line using lock-in infrared-thermography has been used to characterize low cycle fatigue damage of Ti–6Al–4V under a range of applied total strain amplitudes (0.8–1.8 %). The analysis of thermal signatures indicated that the contribution of thermo-elasticity decreased and inelasticity increased with an increase in strain amplitude due to significant change in damage micromechanism from quasi-cleavage to ductile mode. Increase in applied strain resulted into increased fatigue damage and consequently higher temperature increase. An inverse relationship similar to standard strain amplitude-fatigue life equation was established between temperature increase and fatigue life. The damage energy was evaluated using first law of thermodynamics i.e. law of energy conservation. Damage energy increased with an increase in applied strain amplitude. A relationship was also developed between damage energy and strain amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Maldague, X.: Non-destructive Evaluation of Materials by Infrared Thermography. Wiley, London (2001)

    Google Scholar 

  2. Henneke, E.G., Reifsnider, K.L., Stinchcomb, W.W.: Thermography—an NDI method for damage detection. J. Met. 31, 11–15 (1979)

    Google Scholar 

  3. Huang, Y., Xu, J., Shih, C.H.: Application of infrared technique to research on tensile test. Mater. Eval. 12, 76–79 (1980)

    Google Scholar 

  4. Huang, Y., Li, S.X., Shih, C.H.: Advances in fracture research. In: Proceedings of the 6th International Conference on ‘Fracture’, p. 2325. Pergamon Press, New Delhi, India, Dec 1984

  5. Sachdev, A.K., Hunter Jr, J.E.: Thermal effects during uniaxial straining of steels. Metall. Trans. A 13A, 1063–1067 (1982)

    Article  Google Scholar 

  6. Yang, B., Liaw, P.K., Wang, H., Huang, J.Y., Kuo, R.C., Huang, J.G.: The application of nondestructive evaluation technologies. JOM-e (2003)

  7. Wang, H., Jiang, L., Lee, Y.H., Chen, L.J., Liaw, P.K., Seeley, R.R., Klarstrom, D.L.: Infrared imaging during low-cycle fatigue of HR-120 alloy. Metall. Mater. Trans. A 33A, 1287–1291 (2002)

    Article  Google Scholar 

  8. Yang, B., Liaw, P.K., Wang, H., Huang, J.Y., Kuo, R.C., Huang, J.G.: Thermographic investigation of the fatigue behavior of reactor pressure vessel steels. Mater. Sci. Eng. A A314, 131–139 (2001)

    Article  Google Scholar 

  9. Kumar, J., Baby, S., Kumar, V.: Thermographic studies on IMI-834 titanium alloy during tensile loading. Mater. Sci. Eng. A 496(1–2), 303–307 (2008)

    Article  Google Scholar 

  10. Liakat, M., Khonsari, M.M.: Rapid estimation of fatigue entropy and toughness in metals. Mater. Des. 62, 149–157 (2014)

    Article  Google Scholar 

  11. Fan, J., Guo, X., Wu, C.: A new application of the infrared thermography for fatigue evaluation and damage assessment. Int. J. Fat. 44, 1–7 (2012)

    Article  Google Scholar 

  12. Kordatos, E.Z., Aggelis, D.G., Matikas, T.E.: Monitoring mechanical damage in structural materials using complimentary NDE techniques based on thermography and acoustic emission. Composites B 43, 2676–2686 (2012)

    Article  Google Scholar 

  13. Wang, X.G., Crupi, V., Guo, X.L., Zhao, Y.G.: Quantitative thermographic methodology for fatigue assessment and stress measurement. Int. J. Fat. 32, 1970–1976 (2010)

    Article  Google Scholar 

  14. Wagner, D., Ranc, N., Bathias, C., Paris, P.C.: Fatigue crack initiation detection by an infrared thermography method. Fat. Fract. Eng. Mater. Struct. 33, 12–21 (2009)

    Google Scholar 

  15. Crupi, V.: An unifying approach to assess the structural strength. Int. J. Fat. 30, 1150–1159 (2008)

    Article  Google Scholar 

  16. Choi, M., Kang, K., Park, J., Kim, W., Kim, K.: Quantitative determination of a subsurface defect of reference specimen by lock-in infrared thermography. NDT&E Int. 41, 119–124 (2008)

    Article  Google Scholar 

  17. Roesner, H., Meyendorf, N., Karpen, W., Matlikas, T.E.: Development of enabling methodologies for detection and characterisation of early stages of damages in aerospace materials. In: Third Annual Report by the University of Dayton, DARPA NDE-MURI, AFOSR Grant No. F49620-96-1-0442, pp. 177-188 (1999)

  18. Meyendorf, N., Roesner, H., Frouin, J., Maurer, J., Sathish, S.: Acousto-thermal microstructure characterization. In: Thompson, D.O. and Chimenti, D.E. (eds.) CP657, Review of Quantitative Nondestructive Evaluation, vol. 22, pp. 517–524. American Institute of Physics (2003)

  19. Meyendorf, N.G.H., Roesner, H., Kramb, V., Sathish, S.: Thermo-acoustic fatigue characterization. Ultrasonics 40, 427–434 (2002)

    Article  Google Scholar 

  20. Liaw, P.K., Wang, H., Jiang, L., Yang, B., Huang, J.Y., Guo, R.C., Huang, J.G.: Thermographic detection of fatigue damage of pressure vessel steels at 100 Hz and 20 Hz. Scr. Mater. 42(4), 389–395 (2000)

    Article  Google Scholar 

  21. Naderi, M., Khonsari, M.M.: On the role of damage energy in the fatigue degradation characterization of a composite laminate. Composites B 45, 528–537 (2013)

    Article  Google Scholar 

  22. Naderi, M., Kahirdeh, A., Khonsari, M.M.: Dissipated thermal energy and damage evolution of glass/epoxy using infrared thermography and acoustic emission. Composites B 43, 1613–1620 (2012)

    Article  Google Scholar 

  23. Jacobsen, T.K., Sorensen, B.F., Brondsted, P.: Measurement of uniform and localized heat dissipation induced by cyclic loading. Exp. Mech. 38, 289–294 (1998)

    Article  Google Scholar 

  24. Bledzki, A.K., Gassan, J., Kurek, K.: The accumulated dissipated energy of composites under cyclic–dynamic stress. Exp. Mech. 37, 324–327 (1997)

    Article  Google Scholar 

  25. Reifsnider, K.L., Williams, R.S.: Determination of fatigue-related heat emission in composite materials. Exp. Mech. 14, 479–485 (1974)

    Article  Google Scholar 

  26. Aglan, H.A., Gan, Y.X., Chu, F., Zhong, W.H.: Fatigue fracture resistance analysis of polymer composites based on the energy expanded on damage formation. J. Reinf. Plast. Compos. 22, 339–360 (2003)

  27. Groot, S.R.D., Mazur, P.: Non-equilibrium Thermodynamics. Inter Science Publishers, New York (1962)

    MATH  Google Scholar 

  28. Halford, G.R.: The energy required for fatigue. J. Mater. 1, 3–18 (1966)

    Google Scholar 

  29. Kaleta, J., Blotny, R., Harig, H.: Energy stored in a specimen under fatigue limit loading conditions. J. Test. Eval. 19, 326–333 (1990)

    Google Scholar 

  30. Taylor, G.I., Quinney, H.: The latent energy remaining in a metal after cold working. Proc. R. Soc. A 143, 307–326 (1934)

    Article  Google Scholar 

  31. Cho, C., Holmes, J.W., Barber, J.R.: Estimation of interfacial shear in ceramic composites from frictional heating measurements. J. Am. Ceram. Soc. 74, 2802–2808 (1991)

    Article  Google Scholar 

  32. Holman, J.P.: Heat Transfer, 7th edn. McGraw-Hill, New York (1992)

    Google Scholar 

  33. Abolghasem, S., Basu, S., Shekhar, S., Cai, J., Shankar, M.R.: Mapping subgrain sizes resulting from severe simple shear deformation. Acta Mater. 60, 376–386 (2012)

    Article  Google Scholar 

  34. Zhang, B., Shim, V.P.W.: Determination of inelastic heat fraction of OFHC copper through dynamic compression. Int. J. Impact Engg. 37, 50–68 (2010)

    Article  Google Scholar 

  35. Maletta, C., Bruno, L., Corigliano, P., Crupi, V., Guglielmino, E.: Crack-tip thermal and mechanical hysteresis in shape memory alloys under fatigue loading. Mater. Sci. Eng. A 616, 281–287 (2014)

    Article  Google Scholar 

  36. Knysh, P., Korkolis, Y.P.: Determination of the fraction of plastic work converted into heat in metals. Mech. Mater. 86, 71–80 (2015)

    Article  Google Scholar 

  37. Venkataraman, B., Maneka, M., Vasudevan, M., Raj, B.: Thermography for online detection of incomplete penetration and penetration depth estimation. In: 12th A-PCNDT 2006-Asia Pacific Conference on NDT, Auckland, New Zealand, 5–10 Nov 2006

Download references

Acknowledgments

The authors gratefully acknowledge the Defence Research and Development Organization (DRDO) New Delhi, for funding the above research. Test support from Mr. K. Prasad and Mr. B. N. Kowmudi is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalaj Kumar.

Additional information

This article is part of the Topical Collection on Thermography.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Sundara Raman, S.G. & Kumar, V. Analysis and Modeling of Thermal Signatures for Fatigue Damage Characterization in Ti–6Al–4V Titanium Alloy. J Nondestruct Eval 35, 3 (2016). https://doi.org/10.1007/s10921-015-0317-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-015-0317-5

Keywords

Navigation