Skip to main content
Log in

Dynamics and robust control of a space manipulator with flexible appendages for on-orbit servicing

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Space manipulators allow to respond to a variety of problems in future space exploitation and exploration such as on-orbit deployment, active debris removal or servicing operations. However, a difficulty to autonomously control space manipulator systems arise with large and light structures presenting flexible behavior. Flexible dynamics remain a challenging study focus as its modeling may present a first difficulty while the different coupling with the manipulator may deteriorate the control quality. This paper addresses design and control problems related to autonomous space manipulator equipped with kinetic moment exchange devices for spacecraft rotation control when dealing with system internal disturbances, model uncertainties and measurement errors. One advantage of modeling the rigid–flexible dynamics of a multi-body system is the possibility of including the non-measurable states in the system decoupling and linearization. In this work, in addition to the development of an extended state observer (ESO) that estimate the flexible dynamics, a nonlinear disturbance observer (NDO) is also introduced and included in a nonlinear dynamic inversion (NDI) framework where both modeling uncertainties and measurement errors are considered. Inter-dependencies between observers and control dynamics motivate a simultaneous computation of their gains to improve system stability and control performances. This is achieved by the resolution of linear matrix inequalities (LMI). In order to highlight the interest of the proposed scheme and validate our approach in a realistic environment, extensive tests of an on-orbit space telescope assembly use-case are performed on a high-fidelity simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Progr. Aerosp. Sci. 68, 1–26 (2014)

    Article  Google Scholar 

  2. Oda M., Kibe K., Yamagata F.: Ets-vii, space robot in-orbit experiment satellite. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 739–744 (1996)

  3. Priyant Mark, C., Kamath, S.: Review of active space debris removal methods. Space Policy 47, 194–206 (2019)

    Article  Google Scholar 

  4. Ellery, A.: Tutorial review on space manipulators for space debris mitigation. Robotics 8(2), 34 (2019)

    Article  Google Scholar 

  5. Papadopoulos, E., Aghili, F., Ma, O., Lampariello, R.: Robotic manipulation and capture in space: a survey. Fron. Robot. AI 228 (2021)

  6. Song, Y., Li, C., Zhao, H., Xia, S., Li, X., Fan, X.: Review on on-orbit assembly of large space telescopes. In: AOPC 2019: Space Optics, Telescopes, and Instrumentation, pp. 1134103 (2019)

  7. Beyer, A., Grunwald, G., Heumos, M., Schedl, M., Bayer, R., Bertleff, W., Brunner, B., Burger, R., Butterfaß, J., Gruber, R., et al.: Caesar: space robotics technology for assembly, maintenance, and repair. In: Proceedings of the International Astronautical Congress, IAC (2018)

  8. Li, W.-J., Cheng, D.-Y., Liu, X.-G., Wang, Y.-B., Shi, W.-H., Tang, Z.-X., Gao, F., Zeng, F.-M., Chai, H.-Y., Luo, W.-B., et al.: On-orbit service (oos) of spacecraft: a review of engineering developments. Progr. Aerosp. Sci. 108, 32–120 (2019)

    Article  Google Scholar 

  9. Wilde, M., Choon, S.K., Grompone, A., Romano, M.: Equations of motion of free-floating spacecraft-manipulator systems: an engineer’s tutorial. Front. Robot. AI 5, 41 (2018)

    Article  Google Scholar 

  10. Li, Z., Liu, H., Wang, B.: Motion planning and coordination control of space robot using methods of calculated momentum. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1151–1156 (2013)

  11. Rognant, M., Kraiem, S., Sasiadek, J.: Kinematic indices of rotation-floating space robots for on-orbit servicing. In: IFToMM World Congress on Mechanism and Machine Science, pp. 3107–3116 (2019)

  12. Yunhua, W., Han, F., Zheng, M., He, M., Chen, Z., Hua, B., Wang, F.: Attitude control for on-orbit servicing spacecraft using hybrid actuator. Adv. Space Res. 61(6), 1600–1616 (2018)

    Article  Google Scholar 

  13. Xu, Y.: The measure of dynamic coupling of space robot systems. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 615–620 (1993)

  14. Giordano, A.M., Calzolari, D., Albu-Schäffer, A.: Workspace fixation for free-floating space robot operations. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 889–896 (2018)

  15. Giordano, A.M., Ott, C., Albu-Schäffer, A.: Coordinated control of spacecraft’s attitude and end-effector for space robots. IEEE Robot. Autom. Lett. 4(2), 2108–2115 (2019)

    Article  Google Scholar 

  16. Pisculli, A., Gasbarri, P.: A minimum state multibody/fem approach for modeling flexible orbiting space systems. Acta Astronautica 110, 324–340 (2015)

    Article  Google Scholar 

  17. Basmadji, Fatina Liliana, Seweryn, Karol, Sasiadek, Jurek Z.: Space robot motion planning in the presence of nonconserved linear and angular momenta. Multibody System Dynamics 50(1), 71–96 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meng, D., Wang, X., Wenfu, X., Liang, B.: Space robots with flexible appendages: dynamic modeling, coupling measurement, and vibration suppression. J. Sound Vib. 396, 30–50 (2017)

    Article  Google Scholar 

  19. Li, K., Tian, Q., Shi, J., Liu, D.: Assembly dynamics of a large space modular satellite antenna. Mech. Mach. Theory 142, 103601 (2019)

    Article  Google Scholar 

  20. Meng, D., Weining, L., Wenfu, X., She, Y., Wang, X., Liang, B., Yuan, B.: Vibration suppression control of free-floating space robots with flexible appendages for autonomous target capturing. Acta Astronautica 151, 904–918 (2018)

    Article  Google Scholar 

  21. Tomasz, Rybus, Karol, Seweryn, Sasiadek, Jurek Z.: Control system for free-floating space manipulator based on nonlinear model predictive control (nmpc). J. Intell. Robot. Syst. 85(3–4), 491–509 (2017)

    Google Scholar 

  22. Zarafshan, P., Moosavian, S., Ali, A., Papadopoulos, E.G.: Adaptive hybrid suppression control of space free-flying robots with flexible appendages. Robotica 34(7), 1464–1485 (2016)

    Article  Google Scholar 

  23. Wei, H., Gao, Y., Yang, B.: Semi-active vibration control of two flexible plates using an innovative joint mechanism. Mech Syst Signal Process 130, 565–584 (2019)

    Article  Google Scholar 

  24. Lu, J., Yang, H.: Trajectory planning of satellite base attitude disturbance optimization for space robot. In: 3rd International Conference on Control and Robots (ICCR), pp. 85–89 (2020)

  25. Qiao, J., Wu, H, Yu, X.: High-precision attitude tracking control of space manipulator system under multiple disturbances. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems (2019)

  26. Asma, S., Saaj, C.M.: Combined nonlinear \(h_\infty \) controller for a controlled-floating space robot. J. Guid. Control Dyn. 42(8), 1878–1885 (2019)

    Article  Google Scholar 

  27. Liu, Y., Liu, X., Cai, G., Chen, J.: Trajectory planning and coordination control of a space robot for detumbling a flexible tumbling target in post-capture phase. Multibody Syst. Dyn. 52(3), 281–311 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kraïem, S., Rognant, M., Biannic, J.-M., Briere, Y.: Control of rotation-floating space robots with flexible appendages for on-orbit servicing. In: European Control Conference (ECC) (2021)

  29. Alazard, D., Cumer, C., Tantawi, K.: Linear dynamic modeling of spacecraft with various flexible appendages and on-board angular momentums (2008)

  30. Dubanchet, V.: Modeling and control of a flexible space robot to capture a tumbling debris. PhD thesis, Ecole Polytechnique, Montreal (Canada) (2016)

  31. Ebrahimi, A., Mousavian, S.A.A.: Dynamics of space free-flying robots with flexible appendages. 4(4), 29–36 (2007)

  32. Kraïem, S., Rognant, M., Biannic, J.-M., Briere, Y.: Robust control of rotation-floating space robots with flexible appendages for on-orbit servicing. In: Modeling, Estimation and Control Conference (MECC) (2021)

  33. Virgili-Llop, J., Drew, D.V., Romano, M., Hobson, G.V., Wakefield, B.E., Roberts, W.B.: Spacecraft robotics toolkit: an open-source simulator for spacecraft robotic arm dynamic modeling and control. In: 6th International Conference on Astrodynamics Tools and Techniques (2016)

  34. Sanfedino, F., Alazard, D., Pommier-Budinger, V., Falcoz, A., Boquet, F.: Finite element based n-port model for preliminary design of multibody systems. J. Sound Vib. 415, 128–146 (2018)

    Article  Google Scholar 

  35. Craig, R., Jr.: Coupling of substructures for dynamic analyses-an overview. In: 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, pp. 1573 (2000)

  36. Nenchev, D.N., Yoshida, K., Vichitkulsawat, P., Uchiyama, M.: Reaction null-space control of flexible structure mounted manipulator systems. IEEE Trans. Robot. Autom. 15(6), 1011–1023 (1999)

    Article  Google Scholar 

  37. Mohammadi, A., Tavakoli, M., Marquez, H.J., Hashemzadeh, F.: Nonlinear disturbance observer design for robotic manipulators. Control Eng. Practice 21(3), 253–267 (2013)

    Article  Google Scholar 

  38. Chen, Wen-Hua., Ballance, Donald J., Gawthrop, Peter J., O’Reilly, John: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000)

    Article  Google Scholar 

  39. Mulero-Martinez, J.I.: Uniform bounds of the coriolis/centripetal matrix of serial robot manipulators. IEEE Trans. Robot. 23(5), 1083–1089 (2007)

    Article  Google Scholar 

  40. Rognant, M., Cumer, C., Biannic, J.-M., Roa, M.A., Verhaege, A., Bissonnette, V.: Autonomous assembly of large structures in space: a technology review. In: 8th European Conference for Aeronautics and Aerospace Sciences (EUCASS) (2019)

  41. Virgili-Llop, J., et al.: SPART: an open-source modeling and control toolkit for mobile-base robotic multibody systems with kinematic tree topologies. https://github.com/NPS-SRL/SPART

  42. Cumer, C., Rognant, M., Biannic, J.-M., Roos, C.: Modelling and attitude control design for autonomous in-orbit assembly. ESA GNC 2021 (2021)

  43. Lofberg, J.: Yalmip: a toolbox for modeling and optimization in matlab. In: IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508), pp 284–289 (2004)

Download references

Acknowledgements

The PULSAR project is funded under the European Commission’s Horizon 2020 Space Strategic Research Cluster Operational Grants, grant number 821858.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofiane Kraïem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraïem, S., Rognant, M., Biannic, JM. et al. Dynamics and robust control of a space manipulator with flexible appendages for on-orbit servicing. CEAS Space J 15, 681–700 (2023). https://doi.org/10.1007/s12567-022-00474-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-022-00474-9

Keywords

Navigation