Skip to main content
Log in

Dynamics and Control of a Flexible-Link Flexible-Joint Space Robot with Joint Friction

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

Multi-DOF flexible space robots play a significant role in the on-orbit service. The flexibility of the robots is mainly caused by the flexible links and some flexible drive elements in joints. The vibration generated by the component flexibility can affect the accuracy of control. In this paper, the dynamics and control issues of flexible-link flexible-joint (FLFJ) space robots considering joint friction are studied. Firstly, the Spong’s model is employed to depict flexible joints, and the Coulomb friction model is adopted to describe joint friction. Then based on the single direction recursive construction method and velocity variation principle, dynamic equations of the system are derived. Secondly, a trajectory of joint motion is given and a trajectory tracking controller with friction compensation is designed with the computed torque method. Finally, several numerical simulations are carried out to verify the accuracy of the dynamic model and illustrate the effect of joint friction and joint flexibility on the dynamic characteristics of space robots. Besides, simulation results suggest that the controller designed in this paper could effectively achieve the trajectory tracking control for the 6-DOF FLFJ space robot with joint friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Devito CL (1996) A non-linear model for time. Astrophys Sp Sci 244(1–2):357–369. https://doi.org/10.1007/BF00642306

    Article  MathSciNet  MATH  Google Scholar 

  2. Spong MW (1987) Modeling and control of elastic joint robots. J Dyn Syst Meas Control Trans ASME 109(4):310–319. https://doi.org/10.1115/1.3143860

    Article  MATH  Google Scholar 

  3. Bridges MM, Dawson DM (1995) Redesign of robust controllers for rigid-link flexible-joint robotic manipulators actuated with harmonic drive gearing. IEE Proc Control Theory Appl 142(5):508–514. https://doi.org/10.1049/ip-cta:19951970

    Article  MATH  Google Scholar 

  4. Zavrazhina TV, Zavrazhina NM (2001) Influence of elastic and dissipative properties of hinge joints on dynamics of space manipulator. J Autom Inf Sci 33(9–12):53–63. https://doi.org/10.1615/JAutomatInfScien.v33.i10.50

    Article  Google Scholar 

  5. Xu GY, Sun CM (2013) Dynamic modeling and stiffness coefficient analysis of a 3-DOF flexible joint space manipulator. In: Proceeding of 2013 5th International conference intelligent human–machine system cybernetics (IHMSC) 2:171–174. https://doi.org/10.1109/IHMSC.2013.188

  6. Ferretti G, Magnani G, Rocco P (2004) Impedance control for elastic joints industrial manipulators. IEEE Trans Robot 20(3):488–498. https://doi.org/10.1109/TRA.2004.825472

    Article  Google Scholar 

  7. Zhang Q, Liu GJ (2016) Precise control of elastic joint robot using an interconnection and damping assignment passivity-based approach. IEEE/ASME Trans Mechatron 21(6):2728–2736. https://doi.org/10.1109/TMECH.2016.2578287

    Article  Google Scholar 

  8. Xia K, Xing HJ, Ding L, Gao HB, Liu GJ, Deng ZQ (2019) Virtual decomposition-based modeling for multi-DOF manipulator with flexible joint. IEEE Access 7:91582–91592. https://doi.org/10.1109/access.2019.2919749

    Article  Google Scholar 

  9. Talebi HA, Patel RV, Asmer H (2000) Neural network based dynamic modeling of flexible-link manipulators with application to the SSRMS. J Robot Syst 17(7):385–401. https://doi.org/10.1002/1097-4563(200007)17:7%3c385:AID-ROB4%3e3.0.CO;2-3

    Article  MATH  Google Scholar 

  10. Yang T, Yan S, Han Z (2015) Nonlinear model of space manipulator joint considering time-variant stiffness and backlash. J Sound Vib 341:246–259. https://doi.org/10.1016/j.jsv.2014.12.028

    Article  Google Scholar 

  11. He X, Zhang S, Ouyang Y, Fu Q (2020) Vibration control for a flexible single-link manipulator and its application. IET Control Theory Appl 14(7):930–938. https://doi.org/10.1049/iet-cta.2018.5815

    Article  Google Scholar 

  12. Korayem MH, Nikoobin A, Azimirad V (2009) Trajectory optimization of flexible link manipulators in point-to-point motion. Robotica 27(6):825–840. https://doi.org/10.1017/S0263574708005183

    Article  Google Scholar 

  13. Cui L, Wang H, Chen W (2020) Trajectory planning of a spatial flexible manipulator for vibration suppression. Robot Auton Syst 123:103316. https://doi.org/10.1016/j.robot.2019.103316

    Article  Google Scholar 

  14. Korayem MH, Rahimi HN, Nikoobin A (2012) Mathematical modeling and trajectory planning of mobile manipulators with flexible links and joints. Appl Math Model 36(7):3229–3244. https://doi.org/10.1016/j.apm.2011.10.002

    Article  MathSciNet  MATH  Google Scholar 

  15. Buondonno G, De Luca A (2015) A recursive Newton–Euler algorithm for robots with elastic joints and its application to control. IEEE Int Conf Intell Robot Syst 1:5526–5532. https://doi.org/10.1109/IROS.2015.7354160

    Article  Google Scholar 

  16. Tomei P (1991) A simple PD controller for robots with elastic joints. Autom Control IEEE Trans 36(10):1208–1213. https://doi.org/10.1109/9.90238

    Article  MathSciNet  Google Scholar 

  17. Caverly RJ, Zlotnik DE, Bridgeman LJ, Forbes JR (2014) Saturated proportional derivative control of flexible-joint manipulators. Robot Comput Integr Manuf 30(6):658–666. https://doi.org/10.1016/j.rcim.2014.06.001

    Article  Google Scholar 

  18. Yeon JS, Park JH (2008) Practical robust control for flexible joint robot manipulators. In: Proceedings of IEEE international conference robotics and automation. 3377–3382, 2008 https://doi.org/10.1109/ROBOT.2008.4543726

  19. Park CW (2004) Robust stable fuzzy control via fuzzy modeling and feedback linearization with its applications to controlling uncertain single-link flexible joint manipulators. J Intell Robot Syst Theory Appl 39(2):131–147. https://doi.org/10.1023/B:JINT.0000015344.84152.dd

    Article  Google Scholar 

  20. Chaoui H, Gueaieb W, Yagoub MCE, Sicard P (2006) Hybrid neural fuzzy sliding mode control of flexible-joint manipulators with unknown dynamics. In: Proceedings of industrial electronics conference (IECON) 4082–4087, 2006. https://doi.org/10.1109/IECON.2006.348032

  21. Chien MC, Huang AC (2007) Adaptive control for flexible-joint electrically driven robot with time-varying uncertainties. IEEE Trans Ind Electron 54(2):1032–1038. https://doi.org/10.1109/TIE.2007.893054

    Article  Google Scholar 

  22. Kim JY, Croft EA (2019) Full-state tracking control for flexible joint robots with singular perturbation techniques. IEEE Trans Control Syst Technol 27(1):63–73. https://doi.org/10.1109/TCST.2017.2756962

    Article  Google Scholar 

  23. Li Y, Tong SC, Li TS (2012) Fuzzy adaptive dynamic surface control for a single-link flexible-joint robot. Nonlinear Dyn 70(3):2035–2048. https://doi.org/10.1007/s11071-012-0596-7

    Article  MathSciNet  MATH  Google Scholar 

  24. Li WP, Luo B, Huang H (2016) Active vibration control of flexible joint manipulator using input shaping and adaptive parameter auto disturbance rejection controller. J Sound Vib 363:97–125. https://doi.org/10.1016/j.jsv.2015.11.002

    Article  Google Scholar 

  25. Jia PX (2019) Control of flexible joint robot based on motor state feedback and dynamic surface approach. J Control Sci Eng. https://doi.org/10.1155/2019/5431636

    Article  MathSciNet  MATH  Google Scholar 

  26. Giusti A, Malzahn J, Tsagarakis NG, Althoff M (2018) On the combined inverse-dynamics/passivity-based control of elastic-joint robots. IEEE Trans Robot 34(6):1461–1471. https://doi.org/10.1109/TRO.2018.2861917

    Article  Google Scholar 

  27. Qi Z, Xu Y, Luo X et al (2010) Recursive formulations for multibody systems with frictional joints based on the interaction between bodies. Mult Syst Dyn 24(2):133–166. https://doi.org/10.1007/s11044-010-9213-z

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant numbers 11772187, 11802174), the China Postdoctoral Science Foundation (Grant numbers 2018M632104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofeng Liu or Guoping Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Liu, X. & Cai, G. Dynamics and Control of a Flexible-Link Flexible-Joint Space Robot with Joint Friction. Int. J. Aeronaut. Space Sci. 22, 415–432 (2021). https://doi.org/10.1007/s42405-020-00294-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-020-00294-3

Keywords

Navigation