Skip to main content
Log in

Evaluation of the thermal tolerances of different strains of rainbow trout Oncorhynchus mykiss by measuring the effective time required for loss of equilibrium at an approximate upper lethal temperature

  • Original Article
  • Aquaculture
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The thermal tolerance phenotypes of different strains of rainbow trout Oncorhynchus mykiss was investigated in this study. The time at which a fish, acclimated to 17 °C, was no longer able to maintain its equilibrium after reaching the test temperature of 28 °C was recorded as its effective time (ET) in the zone of thermal resistance and used as a parameter of its thermal tolerance. The ET was compared among two strains of rainbow trout, thermally selected and Nikko, and two types of their hybrid progenies (thermally selected male × normal female and thermally selected female × normal male), using 14–15 individuals of each group in tests. Individuals of the thermally selected strain with smaller bodies had a longer ET than those with lager bodies. Five groups of F2 juveniles produced from a full-sibling cross of F1 progenies (Nikko strain females × thermally selected strain males), each containing 40 or 41 individuals, had an ET of 39.3–46.4 min, which was not significantly correlated with body size. Although its ET was influenced by body size, the thermally selected strain showed good thermal tolerance at all body sizes. Moreover, the coefficient of variation of ET was 32–39%, suggesting there was a wide diversity of ET values. Because samples subjected to ET experiments can recover and survive, ET is a promising, convenient indicator to use when examining thermal tolerance phenotypes of large numbers of individuals, which can subsequently provide live individuals with inherited thermal tolerance for use in selective breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Cox DK (1974) Effects of three heating rates on the critical thermal maximum of bluegill. In: Gibbons JW, Sharitz RR (eds) Thermal ecology. CONF-730505. Nat. Tech. Inf. Serv, Springfield, pp 158–163

    Google Scholar 

  • Danzmann RG, Jackson TR, Ferguson MM (1999) Epistasis in allelic expression at upper temperature tolerance QTL in rainbow trout. Aquaculture 173:45–58

    Article  CAS  Google Scholar 

  • Elliott JM (1981) Some aspects of thermal stress on freshwater teleosts. In: Pickering AD (ed) Stress and fish. Academic Press, London, pp 209–245

    Google Scholar 

  • Fry FEJ (1947) Effects of the environment on animal activity.University of Toronto studies. Biological series, no. 55. Publications of the Ontario Fisheries Research Laboratory, vol 68, pp 1–62

  • Gjedrem T (2000) Genetic improvement of cold-water fish species. Aquac Res 31:25–33

    Article  Google Scholar 

  • Hill WG, Mulder HA (2010) Genetic analysis of environmental variation. Genet Res Camb 92:381–395. https://doi.org/10.1017/S0016672310000546

    Article  PubMed  Google Scholar 

  • Ikeguchi K, Ineno T, Itoi S, Kondo H, Kinoshita S, Watabe S (2006) Increased levels of mitochondrial gene transcripts in the thermally selected rainbow trout (Oncorhynchus mykiss) strain during embryonic development. Marine Biotechnol 8:178–188

    Article  CAS  Google Scholar 

  • Ineno T, Tsuchida S, Kanda M, Watabe S (2005) Thermal tolerance of a rainbow trout Oncorhynchus mykiss strain selected by high-temperature breeding. Fish Sci 71:767–775

    Article  CAS  Google Scholar 

  • Ineno T, Endo M, Watabe S (2008) Differences in self-feeding activity between thermally selected and normal strains of rainbow trout Oncorhynchus mykiss at high temperatures. Fish Sci 74:372–379

    Article  CAS  Google Scholar 

  • Ineno T, Tamaki K, Yamada K, Kodama R, Tsuchida S, Tan E, Kinoshita S, Muto K, Yada T, Kitamura S, Asakawa S, Watabe S (2018) Thermal tolerance of a thermally selected strain of rainbow trout Oncorhynchus mykiss and the pedigrees of its F1 and F2 generations indicated by their critical thermal maxima. Fish Sci 84:671–679

    Article  CAS  Google Scholar 

  • Itoi S, Ineno T, Kinoshita S, Hirayama Y, Nakaya M, Kakinuma M, Watabe S (2001) Analysis on serum proteins from rainbow trout Oncorhynchus mykiss exposed to high temperature. Fish Sci 67:191–193

    Article  CAS  Google Scholar 

  • Iwama GK, Thomas PT, Forsyth RB, Vijayan MM (1998) Heat shock protein expression in fish. Rev Fish Biol Fish 8:35–56

    Article  Google Scholar 

  • Jackson TR, Ferguson MM, Danzman RG, Fishback AG, Ihssen PE, O’connell M, Crease TJ (1998) Identification of two QTL influencing upper temperature tolerance in three rainbow trout (Oncorhynchus mykiss) half-sib families. Heredity 80:143–151

    Article  Google Scholar 

  • Lund SG, Caissie D, Cunjak RA, Vijayan MM, Tuft BL (2002) The effects of environmental heat stress on heat shock mRNA and protein expression in Miramichi Atlantic salmon (Salmo salar) parr. Can J Fish Aquat Sci 59:1553–1562

    Article  CAS  Google Scholar 

  • Murray RW (1971) Temperature response. In: Hoar WS, Randall DJ (eds) Fish physiology, vol V. Academic Press, London, pp 121–133

    Google Scholar 

  • Myrick CA, Cech JJ (2000) Temperature influences on California rainbow trout physiological performance. Fish Physiol Biochem 22(3):245–254

    Article  CAS  Google Scholar 

  • Myrick CA, Cech JJ (2005) Effects of temperature on the growth, food consumption, and thermal tolerance of age-0 Nimbus-strain steelhead. N Am J Aquacult 67:324–330

    Article  Google Scholar 

  • Ojima N, Mekuchi M, Ineno T, Tamaki K, Kera A, Kinoshita S, Asakawa S, Watabe S (2012) Differential expression of heat-shock proteins in F2 offspring from F1 hybrids produced between thermally selected and normal rainbow trout strains. Fish Sci 78:1051–1057

    Article  CAS  Google Scholar 

  • Perry GML, Danzmann RG, Ferguson MM, Gibson JP (2001) Quantitative trait loci for upper thermal tolerance in outbred strains of rainbow trout (Oncorhynchus mykiss). Heredity 86:333–341

    Article  CAS  PubMed  Google Scholar 

  • Perry GML, Matyniuk CM, Ferguson MM, Danzmann RG (2005) Genetic parameters for upper thermal tolerance and growth-related traits in rainbow trout (Oncorhynchus mykiss). Aquaculture 250(1–2):120–128

    Article  CAS  Google Scholar 

  • Pottinger TG, Carrick TR (1999) Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. Gen Comp Endocrinol 116:122–132

    Article  CAS  PubMed  Google Scholar 

  • Recsetar MS, Zeigler MP, Ward DL, Bonar SA, Caldwell CA (2012) Relationship between fish size and upper thermal tolerance. Trans Am Fish Soc 141:1433–1438

    Article  Google Scholar 

  • Schindler DW (2001) The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can J Fish Aquat Sci 58:18–29

    Article  Google Scholar 

  • Tang E, Wongwarangkana C, Kinoshita S, Suzuki Y, Oshima K, Hattori M, Ineno T, Tamaki K, Kera A, Muto K, Yada T, Kitamura S, Asakawa S, Watabe S (2012) Global gene expression analysis of gill tissues from normal and thermally selected strains of rainbow trout. Fish Sci 78:1041–1049

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a grant from the Ministry of Agriculture, Forestry, and Fisheries of Japan. We thank Dr. Tsuchida of the Marine Ecology Research Institute Central Laboratory for his valuable advice. We would like to thank Editage (http://www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshinao Ineno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ineno, T., Tamaki, K., Yamada, K. et al. Evaluation of the thermal tolerances of different strains of rainbow trout Oncorhynchus mykiss by measuring the effective time required for loss of equilibrium at an approximate upper lethal temperature. Fish Sci 85, 839–845 (2019). https://doi.org/10.1007/s12562-019-01340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-019-01340-0

Keywords

Navigation