Skip to main content
Log in

Rainbow trout (Oncorhynchus mykiss) adaptation to a warmer climate: the performance of an improved strain under farm conditions

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The change registered in water temperature over recent years has represented a considerable challenge for the culture of salmonid fishes in terms of thermal stress. However, previous trials with Australian, Japanese, and Argentinean rainbow trout lines suggested that improvements in thermal performance might be possible. The aim of this work was to explore performance, i.e., the survival, malformations, food intake, growth, feed conversion efficiency, condition factor, thermal tolerance, and preferred temperature of a number of F1 families (wild thermal resistant male × farmed female) in order to formulate proposals for future work. The performances evaluated showed significant differences between F1 and control families, but no major heterogeneity within F1 families. The incidence of complex malformations, lower in F1 families than in controls, could indicate an advantage due to lower homozygosity. Thermal tolerance varied within F1 families but preferred temperature did not. Survival data suggested that chronic exposure to 20.5 °C had a lethal effect on control families. However, F1 families acclimated to 20.5 °C over a long period of time (ca. 109 days) preferred a mean temperature of 20.2 ± 0.2 °C, a final temperature preference substantially higher than those observed for other populations and strains of the species. Although growth differences between control and F1 families should be considered with caution, since no family was selected by growth in this work, it appears that simple selection by growth could be all that is necessary before beginning the process of introducing these families into farmed lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

AT:

Acclimation temperature

ATU:

Accumulated thermal units

CENSALBA:

Centro de Salmonicultura Bariloche

CF:

Condition factor

DA:

Discriminant analysis

DF:

Discriminant function

FCE:

Feed conversion efficiency

GR:

Growth rate

LET:

Loss of equilibrium temperature

MAAT:

Mean annual air temperature

MSAT:

Mean summer air temperature

MSGR:

Mass-specific growth rate

PT:

Preferred temperature

R:

Ration

SL:

Standard length

W:

Weight

References

  • Aigo J, Lattuca M, Cussac V (2014) Susceptibility of native perca (Percichthys trucha) and exotic rainbow trout (Oncorhynchus mykiss) to high temperature in Patagonia: different physiological traits and distinctive responses. Hydrobiology 736:73–82. https://doi.org/10.1007/s10750-014-1888-3

    Article  CAS  Google Scholar 

  • Báez V, Aigo J, Cussac V (2011) Climate change and fish culture in Patagonia: present situation and perspectives. Aquac Res 42:787–796. https://doi.org/10.1111/j.1365-2109.2011.02804.x

    Article  Google Scholar 

  • Balon E (1990) Epigenesis of an epigeneticist: the development of some alternative concepts on the early ontogeny and evolution of fishes. GIR 1:1–42

    Google Scholar 

  • Bettoli P, Neill W, Kelsh S (1985) Temperature preference and heat resistance of grass carp, Ctenopharyngodon idella (Valenciennes), bighead carp, Hypophthalmichthys mobilis (Gray), and their F1 hybrid. J Fish Biol 27:239–247

    Article  Google Scholar 

  • Boglione C, Gavaia P, Koumoundouros G, Gisbert E, Moren M, Fontagné S, Witten PE (2013) Skeletal anomalies in reared European fish larvae and juveniles. Part 1: normal and anomalous skeletogenic processes. Rev Aquacult 5:99–120. https://doi.org/10.1111/raq.12015

    Article  Google Scholar 

  • Boglione C, Pulcini D, Scardi M, Palamara E, Russo T, Cataudella S (2014) Skeletal anomaly monitoring in rainbow trout (Oncorhynchus mykiss, Walbaum 1792) reared under different conditions. PLoS One 9:e96983. https://doi.org/10.1371/journal.pone.0096983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnet E, Fostier A, Bobe J (2007) Characterization of rainbow trout egg quality: a case study using four different breeding protocols, with emphasis on the incidence of embryonic malformations. Theriogenology 67:786–794. https://doi.org/10.1016/j.theriogenology.2006.10.008

    Article  PubMed  Google Scholar 

  • Burgos-Alvarado M (1999) Malformaciones encontradas en alevines de salmon del atlántico (Salmo salar) provenientes de ovas nacionales e importadas en una piscicultura de la Decima Region, Chile. Dissertation, Universidad Austral de Chile. http://cybertesis.uach.cl/tesis/uach/1999/fvb957m/doc/fvb957m.pdf. Accessed 7/19/2019

  • Chen Z, Snow M, Lawrence C et al (2015) Selection for upper thermal tolerance in rainbow trout (Oncorhynchus mykiss, Walbaum). J Exp Biol 218:803–812. https://doi.org/10.1242/jeb.113993

    Article  PubMed  Google Scholar 

  • Crichigno S, Becker L, Orellana M et al (2018) Rainbow trout adaptation to a warmer Patagonia and its potential to increase temperature tolerance in cultured stocks. Aquacult Rep 9:82–88. https://doi.org/10.1016/j.aqrep.2017.11.001

    Article  Google Scholar 

  • Crozier L, Hutchings J (2014) Plastic and evolutionary responses to climate change in fish. Evol Appl 7:68–87. https://doi.org/10.1111/eva.12135

    Article  PubMed  PubMed Central  Google Scholar 

  • Darlington PJ (1957) Zoogeography: The geographical distribution of animals. John Wiley and sons, Nueva York

  • Ellender B, Rivers-Moore N, Coppinger C et al (2016) Towards using thermal stress thresholds to predict salmonid invasion potential. Biol Invasions 18:3513–3525. https://doi.org/10.1007/s10530-016-1244-9

    Article  Google Scholar 

  • Elliot J (1981) Some aspects of thermal stress on freshwater teleosts. In: Pickering A (ed) Stress and fish. Academic Press, London, pp 209–245

    Google Scholar 

  • Estay F, Rivers-Moore N, Coppinger C et al. (1995). Manejo reproductivo de salmónidos. Bases biológicas y manejo de un stock de peces reproductores. Serie de Publicaciones en Acuicultura. No. 2, FUNCAP, Chile

  • Fitzsimmons S, Perutz M (2006) Effects of egg incubation temperature on survival, prevalence and types of malformations in vertebral column of Atlantic Cod (Gadus morhua) larvae. Bull Eur Ass Fish Pathol 26:80–86

    Google Scholar 

  • Fry F (1971) Effects of environmental factors on the physiology of fish. In: Hoar W, Randall D (eds) Fish physiology, vol 6. Academic Press, New York, pp 1–98

    Google Scholar 

  • Gislason H, Karstensen H, Christiansen D, Hjelde K, Helland S, Bæverfjord G (2010) Rib and vertebral deformities in rainbow trout (Oncorhynchus mykiss) explained by a dominant-mutation mechanism. Aquaculture 309:86–95. https://doi.org/10.1016/j.aquaculture.2010.09.016

    Article  CAS  Google Scholar 

  • Ineno T, Tsuchida S, Kanda M et al (2005) Thermal tolerance of a rainbow trout Oncorhynchus mykiss strain selected by high-temperature breeding. Fish. Sci. 71:767–775. https://doi.org/10.1111/j.1444-2906.2005.01026.x

    Article  CAS  Google Scholar 

  • Ineno T, Endo M, Watabe S (2008) Differences in self-feeding activity between thermally selected and normal strains of rainbow trout Oncorhynchus mykiss at high temperatures. Fish. Sci. 74:372–379. https://doi.org/10.1111/j.1444-2906.2008.01534.x

    Article  CAS  Google Scholar 

  • Ineno T, Tamaki K, Yamada K, Kodama R, Tsuchida S, Tan E, Kinoshita S, Muto K, Yada T, Kitamura S, Asakawa S, Watabe S (2018) Thermal tolerance of a thermally selected strain of rainbow trout Oncorhynchus mykiss and the pedigrees of its F1 and F2 generations indicated by their critical thermal maxima. Fish. Sci. 84:671–679

    Article  CAS  Google Scholar 

  • Jobling M (1981) Temperature tolerance and the final preferendum-rapid methods for the assessment of optimum growth temperatures. J Fish Biol 19:439–455

    Article  Google Scholar 

  • Jobling M, Tveiten H, Hatlen B (1998) Cultivation of Artic charr: an update. Aquacult Int 6:181–186

    Article  Google Scholar 

  • Kullgren A, Jutfelt F, Fontanillas R, Sundell K, Samuelsson L, Wiklander K, Kling P, Koppe W, Larsson DGJ, Björnsson BT, Jönsson E (2013) The impact of temperature on the metabolome and endocrine metabolic signals in Atlantic salmon (Salmo salar). Comp Biochem Physiol A 164:44–53. https://doi.org/10.1016/j.cbpa.2012.10.005

    Article  CAS  Google Scholar 

  • Lahnsteiner F, Patzner R (2002) Rainbow trout egg quality determination by the relative weight increase during hardening: a practical standardization. J Appl Ichthyol 18:24–26. https://doi.org/10.1046/j.1439-0426.2002.00289.x

    Article  Google Scholar 

  • Le Bihanic F, Morin B, Cousin X et al (2014) Developmental toxicity of PAH mixtures in fish early life stages. Part I: adverse effects in rainbow trout. Environ Sci Pollut Res 21:13720–13731. https://doi.org/10.1007/s11356-014-2804-0

    Article  CAS  Google Scholar 

  • Leitritz E (1959) Trout and salmon culture (hatchery methods). State Of California Department Of Fish And Game. Fish Bulletin No. 107

  • McNab B (2002) The physiological ecology of vertebrates. A view from energetics. Cornell University, New York

    Google Scholar 

  • Molony B (2001) Environmental requirements and tolerances of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) with special reference to Western Australia: a review. Fish Res Rep 130:1–28

    Google Scholar 

  • Molony B, Church A, Maguire G (2004) A comparison of the heat tolerance and growth of a selected and non-selected line of rainbow trout Oncorhynchus mykiss, in Western Australia. Aquaculture 241:655–665. https://doi.org/10.1016/j.aquaculture.2004.08.030

    Article  Google Scholar 

  • Morrissy N (1973) Comparison of strains of Salmo gairdneri Richardson from New South Wales, Victoria and Western Australia. Bull Austral Soc Limnol 5:11–20

    Google Scholar 

  • Morrone J (2002) Biogeographical regions under track and cladistic scrutiny. J Biogeogr 29:149–152

    Article  Google Scholar 

  • Morrone JJ (2004) The south american transition zone: characterization and evolutionary relevance. Acta Ent. Chilena, 28(1), 41–50

  • Narum S, Campbell N, Meyer K et al (2013) Thermal adaptation and acclimation of ectotherms from differing aquatic climates. Mol Ecol 22:3090–3097. https://doi.org/10.1111/mec.12240

    Article  PubMed  Google Scholar 

  • Norusis M (1986) SPSS/PC+ advanced statistics. SPSS Inc, Chicago

    Google Scholar 

  • Oku H, Tokuda M, Matsunari H, Furuita H, Murashita K, Yamamoto T (2014) Characterization of differentially expressed genes in liver in response to the rearing temperature of rainbow trout Oncorhynchus mykiss and their heritable differences. Fish Physiol. Biochem. 40:1757–1769. https://doi.org/10.1007/s10695-014-9965-0

    Article  CAS  PubMed  Google Scholar 

  • Paladino F, Spotila J, Schubauer J et al (1980) The critical thermal maximum: a technique used to elucidate physiological stress and adaptation in fishes. Rev Can Biol 39:115–122

    Google Scholar 

  • Pankhurst N, Purser G, van der Kraak G et al (1996) Effect of holding temperature on ovulations, egg fertility, plasma levels of reproductive hormones and in vitro ovarian steroidogenesis in the rainbow trout Oncorhynchus mykiss. Aquaculture 146:277–290

    Article  CAS  Google Scholar 

  • Power G (1980) The brook charr Salvelinus fontinalis. In: Balon E (ed) Charrs: salmonid fishes of the genus Salvelinus. Dr W Junk, The Hague, pp 141–204

    Google Scholar 

  • Roze T, Christen F, Amerand A, Claireaux G (2013) Trade-off between thermal sensitivity, hypoxia tolerance and growth in fish. J Therm Biol 38:98–106. https://doi.org/10.1016/j.jtherbio.2012.12.001

    Article  Google Scholar 

  • Tymchuk W, Devlin R (2005) Growth differences among first and second generation hybrids of domesticated and wild rainbow trout (Oncorhynchus mykiss). Aquaculture 245:295–300

    Article  Google Scholar 

  • Verhille C, English K, Cocherell D et al (2016) High thermal tolerance of a rainbow trout population near its southern range limit suggests local thermal adjustment. Conserv Physiol 4:cow057. https://doi.org/10.1093/conphys/cow057

    Article  PubMed  PubMed Central  Google Scholar 

  • Von Bayer C (1950) Reprint: a method of measuring fish eggs. Prog Fish Cult 12:105–107 https://www.tandfonline.com/doi/abs/10.1577/1548-8640%281950%2912%5B105%3ARMOMFE%5D2.0.CO%3B2?journalCode=uzpf20. Accessed 7/19/2019

  • Zelennikov OV, Golod VM (2019) Gametogenesis of rainbow trout Parasalmo mykiss cultivated from hatching to sexual maturity at a temperature of approximately 20°С. J Ichthyol 59:78–89. https://doi.org/10.1134/S0032945219010181

    Article  Google Scholar 

  • Zhang Y, Healy T, Vandersteen W et al (2018) A rainbow trout Oncorhynchus mykiss strain with higher aerobic scope in normoxia also has superior tolerance of hypoxia. J Fish Biol 92:487–503. https://doi.org/10.1111/jfb.13530

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the collaboration of Mabel Orellana, Rodrigo Larraza, and Guillermo Mirenna from the Centro de Salmonicultura Bariloche, Universidad Nacional del Comahue, Argentina. This work was supported by Universidad Nacional del Comahue (04B181 and B204), Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 11220120100063CO), and Agencia Nacional de Promoción Científica y Tecnológica (PICT-2013-2640) of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Alejandra Crichigno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crichigno, S.A., Cussac, V.E. Rainbow trout (Oncorhynchus mykiss) adaptation to a warmer climate: the performance of an improved strain under farm conditions. Aquacult Int 27, 1869–1882 (2019). https://doi.org/10.1007/s10499-019-00438-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-019-00438-7

Keywords

Navigation