Skip to main content

Advertisement

Log in

Structural transformation of oyster, hard clam, and sea urchin shells after calcination and their antibacterial activity against foodborne microorganisms

  • Original Article
  • Food Science and Technology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the antibacterial properties of oyster, hard clam, and sea urchin shell powders as a result of calcination. After subjection to calcination at 1050 °C for 2 h, and as identified by FTIR and XRD spectra, the structures of oyster, hard clam, and sea urchin shell powders were mainly transformed into calcium oxide, with slight amounts of calcium hydroxide. Metal content testing revealed no detectable harmful heavy metals, and showed rich content of trace elements including Ba, Sr, Mg, and Mn. To evaluate their antibacterial properties, activity against five foodborne microorganisms was assessed using the disk diffusion method, which indicated the presence of antibacterial activity in these products at a concentration of 1 %. These results indicate antibacterial potential for oyster, hard clam, and sea urchin shell powders after subjection to calcination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harnedy PA, FitzGerald RJ (2012) Bioactive peptides from marine processing waste and shellfish: a review. J Funct Foods 4:6–24

    Article  CAS  Google Scholar 

  2. Bulgariu D, Bulgariu L (2012) Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresour Technol 103:489–493

    Article  CAS  PubMed  Google Scholar 

  3. Park S, Li Y (2012) Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour Technol 111:42–48

    Article  CAS  PubMed  Google Scholar 

  4. Gopi S, Subramanian VK (2013) Anomalous transformation of calcite to vaterite: significance of HEDTA on crystallization behavior and polymorphism at elevated temperatures. Indian J Chem B 52:342–349

    Google Scholar 

  5. Ngo DH, Wijesekara I, Vo TS, Ta QV, Kim SK (2011) Marine food-derived functional ingredients as potential antioxidants in the food industry: an overview. Food Res Int 44:523–529

    Article  CAS  Google Scholar 

  6. Dickson JAD (2001) Transformation of echinoid Mg calcite skeletons by heating. Geochim Cosmochim Acta 65:443–454

    Article  CAS  Google Scholar 

  7. Liu YC, Torita A, Hasegawa Y (2006) Scallop shell extract promotes recovery from UV-B-induced damage in rat skin epidermal layer. Fish Sci 72:388–392

    Article  CAS  Google Scholar 

  8. Amarowicz R, Synowiecki J, Shahidi F (2012) Chemical composition of shells from red (Strongylocentrotus franciscanus) and green (Strongylocentrotus droebachiensis) sea urchin. Food Chem 133:822–826

    Article  CAS  Google Scholar 

  9. Chen YC, Hwang DF (2014) Evaluation of antioxidant properties and biofunctions of polar, nonpolar, and water-soluble fractions extracted from gonad and body wall of the sea urchin Tripneustes gratilla. Fish Sci 80:1311–1321

    Article  CAS  Google Scholar 

  10. Asada T, Omichi M, Kimura T, Oikawa K (2001) Bactericidal effect of calcium oxide and calcined shell calcium on Legionella pneumophila. J Health Sci 47:414–418

    Article  CAS  Google Scholar 

  11. Yang Y, Yao Q, Pu X, Hou Z, Zhang Q (2011) Biphasic calcium phosphate macroporous scaffolds derived from oyster shells for bone tissue engineering. Chem Eng J 173:837–845

    Article  CAS  Google Scholar 

  12. Bramhe S, Kim TN, Balakrishnan A, Chu MC (2014) Conversion from biowaste Venerupis clam shells to hydroxyapatite nanowire. Mater Lett 135:195–198

    Article  CAS  Google Scholar 

  13. Çağri-Mehemtoğlu A (2011) Inhibition of Listeria monocytogenes and Salmonella enteritidis on chicken wings using scallop-shell powder. Poult Sci 90:2600–2605

    Article  Google Scholar 

  14. Vecchio KS, Zhang X, Massie JB, Wang M, Kim CW (2007) Conversion of sea urchin spines to Mg-substituted tricalcium phosphate for bone implants. Acta Biomater 3:785–793

    Article  CAS  PubMed  Google Scholar 

  15. Salem MZM, Ali HM, Shanhorey NAE, Megeed AA (2013) Evaluation of extracts and essential oil from Callistemon viminalis leaves: antibacterial and antioxidant activities, total phenolic and flavonoid contents. Asian Pac J Trop Med 6:785–791

    Article  CAS  PubMed  Google Scholar 

  16. Bae DH, Yeon JH, Park SY, Lee DH, Ha SD (2006) Bactericidal effects of CaO (scallop-shell powder) on foodborne pathogenic bacteria. Arch Pharm Res 29:298–301

    Article  CAS  PubMed  Google Scholar 

  17. Balmain J, Hannoyer B, Lopez E (1999) Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analyses of mineral and organic matrix during heating of mother of pearl (Nacre) from the shell of the mollusk Pinctada maxima. J Biomed Nater Res 48:749–754

    Article  CAS  Google Scholar 

  18. Lee SW, Jang YN, Kim JC (2011) Characteristics of the aragonitic layer in adult oyster shells, Crassostrea gigas: structural study of myostracum including the adductor muscle scar. Evid Based Complement Altern Med 2011:742963-1–742963-10. doi: 10.1155/2011/742963

    Google Scholar 

  19. Garcia JLT, Alvarez M, Aguilar DH, Quintana PJ (2008) Spectroscopic, structural and textural properties of CaO and CaO–SiO2 materials synthesized by sol–gel with different acid catalysts. J Non-Cryst Solids 354:729–732

    Article  CAS  Google Scholar 

  20. Torita A, Miyamoto A, Hasegawa Y (2007) The effects of scallop shell extract on collagen synthesis. Fish Sci 73:1388–1394

    CAS  Google Scholar 

  21. Damien E, Revell PA (2004) Coralline hydroxyapatite bond graft substitute: a review of experimental studies and biomedical applications. J Appl Biomater Biomech 2:65–73

    CAS  PubMed  Google Scholar 

  22. Li M, Yao ZT, Chen T, Lou ZH, Xia M (2014) The antibacterial activity and mechanism of mussel shell waste derived material. Powder Technol 264:577–582

    Article  CAS  Google Scholar 

  23. Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1996) Detection of active oxygen generated from ceramic powders having antibacterial activity. J Chem Eng Jpn 30:1034–1039

    Article  Google Scholar 

  24. Sawai J, Shiga H, Kojima H (2001) Kinetic analysis of the bactericidal action of heated scallop-shell powder. Int J Food Microbiol 71:211–218

    Article  CAS  PubMed  Google Scholar 

  25. Choi YM, Whang JH, Kim JM, Suh HJ (2005) The effect of oyster shell powder on the extension of the shelf-life of kimchi. Food Control 17:695–699

    Article  Google Scholar 

  26. Kim YS, Choi YM, Noh DO, Cho SY, Suh HJ (2006) The effect of oyster shell powder on the extension of the shelf life of tofu. Food Chem 103:155–160

    Article  Google Scholar 

  27. Bodur T, Yaldirak G, Kola O, Çağri-Mehemtoğlu A (2010) Inhibition of Listeria monocytogenes and Escherchia coli O157:H7 on frankfurters using scallop-shell powder. J Food Saf 30:740–752

    CAS  Google Scholar 

  28. Bystrom A, Claesson R, Sundqvist G (1985) The antibacterial effect of camphorated paramonochlorophenol, camphorated phenol and calcium hydroxide in treatment of infected root canals. Endod Dent Traumatol 1:170–175

    Article  CAS  PubMed  Google Scholar 

  29. Siqueira JF Jr, Lopes HP (1999) Mechanisms of antimicrobial activity of calcium hydroxide: a critical review. Int Endod J 32:361–369

    Article  PubMed  Google Scholar 

  30. Mohammadi Z, Shalavi S, Yazdizadeh M (2012) Antimicrobial activity of calcium hydroxide in endodontics: a review. Chonnam Med J 48:133–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by funding from the Fisheries Agency, Council of Agriculture. The instruments were supported by the Food and Drug Administration, Ministry of Health and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deng-Fwu Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YC., Lin, CL., Li, CT. et al. Structural transformation of oyster, hard clam, and sea urchin shells after calcination and their antibacterial activity against foodborne microorganisms. Fish Sci 81, 787–794 (2015). https://doi.org/10.1007/s12562-015-0892-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-015-0892-5

Keywords

Navigation