Skip to main content
Log in

Antibacterial Action of Chitosan Produced from Shrimp Waste Against the Growth of Escherichia coli, Staphylococcus epidermidis, Proteus mirabilis and Pseudomonas aeruginosa

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The main goal of this study was to investigate in vitro the antibacterial action of chitosan (CS), in various physical forms (film, bead, powder and solution), against selected bacteria including Escherichia coli, Staphylococcus epidermidis, Proteus mirabilis and Pseudomonas aeruginosa. For this purpose, chitosan was produced by N-deacetylation of chitin under different alkaline conditions. Degree of deacetylation (DDA), molecular weight and viscosity of each form of chitosan were determined. The functional groups of chitosan were confirmed by Fourier Transform Infrared Spectroscopy and the degradation temperatures by Differential Scanning Calorimetry (DSC). Chitosan with high DDA (95%), molecular weight (149.01 KDa) and viscosity (0.2498 dL/g) was obtained by deacetylation with 50% of sodium hydroxide at 90 °C for 4 h. The antibacterial test results demonstrated the presence of significant antibacterial action of soluble chitosan against the tested pathogenic bacteria. In addition, the bacterial growth showed a considerable decrease in bacterial biomass after addition of CS, the resistance of the studied bacterial strains against soluble CS decreased in the following order: E. coli > P. mirabilis > S. epidermidis and their action process was bacteriostatic rather than bactericidal.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this paper and its supplementary information files.

References

  1. Hirano, S.: Production and application of chitin and chitosan in Japan. In: Skjak-Braek, G., Anthonsen, T., Sanford, P. (eds.) Chitin and chitosan: sources, chemistry, biochemistry, physical properties and applications, pp. 37–43. Elsevier Science Publishers, Essex (1989)

    Google Scholar 

  2. Webster, C., Onokpise, O., Abazinge, M., Muchovej, J., Johnson, E., Louime, C.: Turning waste into usable products: a case study of extracting chitosan from blue crab. Am. J. Environ. Sci. 10(4), 357–362 (2014)

    Article  Google Scholar 

  3. Triunfo, M., Tafi, E., Guarnieri, A., Scieuzo, C., Hahn, T., Zibek, S., Salvia, R., Falabella, P.: Insect chitin-based nanomaterials for innovative cosmetics and cosmeceuticals. Cosmetics 8(2), 40 (2021)

    Article  Google Scholar 

  4. Kumari, S., Rath, P.K.: Extraction and characterization of chitin and chitosan from (Labeo rohit) fish scales. Procedia Mater. Sci 6, 482–489 (2014)

    Article  Google Scholar 

  5. Muzzarelli, R.A.A., Muzzarelli, C.: Chitin and chitosan hydrogels. In: Phillips, G.O., Williams, P.A.(eds), Handbook of Hydrocolloids (Second Edition), pp. 849–888. Woodhead Publishing, Cambridge (2009). https://doi.org/10.1533/9781845695873.849

  6. Ssekatawa, K., Byarugaba, D.K., Wampande, E.M., Moja, T.N., Nxumalo, E., Maaza, M., Sackey, J., Ejobi, F., Kirabira, J.B.: Isolation and characterization of chitosan from Ugandan edible mushrooms, Nile perch scales and banana weevils for biomedical applications. Sci. Rep. 11, 4116 (2021)

    Article  Google Scholar 

  7. Triunfo, M., Tafi, E., Guarnieri, A., Salvia, R., Scieuzo, C., Hahn, T., Zibek, S., Gagliardini, A., Panariello, L., Coltelli, M.B., De Bonis, A., Falabella, P.: Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci. Rep. 12(1), 6613 (2022)

    Article  Google Scholar 

  8. Ke, C.-L., Deng, F.-S., Chuang, C.-Y., Lin, C.-H.: Antimicrobial actions and applications of chitosan. Polymers 13(6), 904 (2021)

    Article  Google Scholar 

  9. Raja, P., Chellaram, C., John, A.A.: Antibacterial properties of chitin from shell wastes. Indian J. Innov. Dev. 1, 7–11 (2012)

    Google Scholar 

  10. Friedman, M., Juneja, V.K.: Review of antimicrobial and antioxidative activities of chitosans in food. J. Food Protect 73, 1737–1761 (2010)

    Article  Google Scholar 

  11. Kong, M., Chen, X.G., Xing, K., Park, H.J.: Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol. 144, 51–63 (2010)

    Article  Google Scholar 

  12. Confederat, L.G., Tuchilus, C.G., Dragan, M., Sha’at, M., Dragostin, O.M.: Preparation and antimicrobial activity of chitosan and its derivatives: a concise review. Molecules 26, 3694 (2021)

    Article  Google Scholar 

  13. Goy, R.C., Morais, S.T.B., Assis, O.B.G.: Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia 26(1), 122–127 (2016)

    Article  Google Scholar 

  14. Shi, B., Zhang, H., Shen, Z., Bi, J., Dai, S.: Developing a chitosan supported imidazole schiff-base for high-efficiency gene delivery. Polym. Chem. 4, 840–850 (2013)

    Article  Google Scholar 

  15. Devlieghere, F., Vermeulen, A., Debevere, J.: Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol. 21, 703–714 (2004)

    Article  Google Scholar 

  16. Helander, M., Nurmiaho-Lassila, E.L., Ahvenainen, R., Rhoades, J., Roller, S.: Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int. J. Food Microbiol. 71(2–3), 235–244 (2001)

    Article  Google Scholar 

  17. Duan, C., Meng, X., Meng, J., Khan Md, I.H., Dai, L., Khan, A., An, X., Zhang, J., Huq, T., Ni, Y.: Chitosan as a preservative for fruits and vegetables: a review on chemistry and antimicrobial properties. J. Bioresour. Bioprod. 4(1), 11–21 (2019)

    Article  Google Scholar 

  18. Guarnieri, A., Triunfo, M., Scieuzo, C., Ianniciello, D., Tafi, E., Hahn, T., Zibek, S., Salvia, R., De Bonis, A., Falabella, P.: Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect hermetia illucens. Sci. Rep. 12, 8084 (2022)

    Article  Google Scholar 

  19. Ardean, C., Davidescu, C.M., Nemeş, N.S., Negrea, A., Ciopec, M., Duteanu, N., Negrea, P., Duda-Seiman, D., Musta, V.: Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization. Int. J. Mol. Sci. 22, 7449 (2021). https://doi.org/10.3390/ijms22147449

    Article  Google Scholar 

  20. Ramachandiran, S., Satpaty, S., Shankar, K., Kalimuthu, K., Muthuvel, A.: Anti-cancer properties of protein hydrolysate from the posterior salivary gland of amphioctopus membranaceus (Quoy & Gaimard, 1832). Int. J. Pept. Res. Ther. 26(3), 1429–1436 (2020)

    Article  Google Scholar 

  21. Liu, N., Chen, X.G., Park, H.J., Liu, C.G., Liu, C.S., Meng, X.H.: Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr. Polym. 64(1), 60–65 (2006)

    Article  Google Scholar 

  22. Ramasamy, P., Barwin Vino, A., Saravanan, R., Subhapradha, N., Shanmugam, V., Shanmugam, A.: Screening of antimicrobial potential of polysaccharide from cuttlebone and methanolic extract from body tissue of sepia prashadi Winkworth, 1936. Asian Pac. J. Trop. Biomed. 1(2), S244–S248 (2011)

    Article  Google Scholar 

  23. Boudouaia, N., Bengharez, Z., Jellali, S.: Preparation and characterization of chitosan extracted from shrimp shells waste and chitosan film: application for eriochrome black T removal from aqueous solutions. Appl. Water Sci. 9(4), 1–12 (2019)

    Article  Google Scholar 

  24. Mokeddem, A., Benykhlef, S., Bendaoudi, A.A., Boudouaia, N., Mahmoudi, H., Bengharez, Z., Topel, S.D., Topel, Ã.: Sodium alginate-based composite films for effective removal of congo red and Coralene dark red 2B dyes: kinetic, isotherm and thermodynamic analysis. Water 15, 1709 (2023)

    Article  Google Scholar 

  25. Qu, B., Luo, Y.: Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors– A review. International Journal of Biological Macromolecules 152, 437–448 (2020)

  26. Bauer, A.W., Kirby, W.M., Sherris, J.C., Turck, M.: Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45(4), 493–496 (1966)

    Article  Google Scholar 

  27. Henry M, Edy AM, Desmarest P, Manoir JD: Glycyrrhiza glabra L (Licorice): cell culture, regeneration, and the production of glycyrrhizin. In: Bajaj YPS (eds) Medicinal and aromatic plants III biotechnology in agriculture and forestry. Vol. 15. Springer, Heidelberg (1991)

    Google Scholar 

  28. Tokatlı, K., Demirdoven, A.: Optimization of chitin and chitosan production from shrimp wastes and characterization. J. Food Process. Preserv. (2017). https://doi.org/10.1111/jfpp.13494

    Article  Google Scholar 

  29. Sreerag, G., Sabu, T., Anitha, P.: Handbook of chitin and chitosan, 1st edn. Elsevier, Amsterdam (2020). ISBN 9780128179703

  30. Wang, X.K., Wang, J.G., Guo, P.Q., Guo, W.L., Li, G.L.: Chemical effect of swirling jet-induced cavitation: degradation of rhodamine B in aqueous solution. Ultrason. Sonochem. 15, 357–363 (2008)

    Article  Google Scholar 

  31. Chen, R., Wang, X., Yao, X., Zheng, X., Wang, J., Jiang, X.: Near-IR-triggered photothermal/photodynamic dual-moda lity therapy system via chitosan hybrid nanospheres. Biomaterials 34(33), 8314–8322 (2013)

    Article  Google Scholar 

  32. Muzzarelli, R.A.A., Tanfani, F., Emanuelli, M., Gentile, S.: The chelation of cupric ions by chitosan membranes [Callinectessapidus, blue crab shell]. Int. J. Appl. Biotechnol. Biochem. 2, 380–389 (1980)

    Google Scholar 

  33. Ahlafi, H., Moussout, H., Boukhlifi, F., Echetna, M., Bennani, M.N., Slimane, S.M.: Kinetics of N-deacetylation of chitin extracted from shrimp shells collected from coastal area of Morocco. Mediterranean J. Chem. 2(3), 503–513 (2013)

    Article  Google Scholar 

  34. Muzzarelli, R.A.A., Rocchetti, R.: Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydr. Polym. 5(6), 461–472 (1985)

    Article  Google Scholar 

  35. No, H.K., Hur, E.Y.: Control of foam formation by antifoam during demineralization of crustacean shell in preparation of chitin. J. Agric. Food Chem. 46, 3844–3846 (1998)

    Article  Google Scholar 

  36. Miya, M., Iwamoto, R., Mima, S.: FTIR study of intermolecular interactions in polymer blends. J. Polym. Sci. 22, 1149–1151 (1984)

    Google Scholar 

  37. Li, B., Wu, X., Bao, B., Guo, R., Wu, W.: Evaluation of α-chitosan from crab shell and β-chitosan from squid gladius based on biochemistry performance. Appl. Sci. 11, 3183 (2021)

    Article  Google Scholar 

  38. Domard, A., Domard, M.: Chitosan: structure-properties relationship and biomedical applications. In: Dumitriu, S. (ed.) Polymeric Biomaterials, 2nd edn., pp. 187–212. Marcel Dekker Inc, New York (2002)

    Google Scholar 

  39. Moller, H., Grelier, S., Pardon, P., Coma, V.: Antimicrobial and physico–chemical properties of chitosan-HPMC-based films. J. Agric. Food Chem. 54, 3290–3296 (2004)

    Google Scholar 

  40. Ponce, A.G., Fritz, R., Del valle, C., Roura, S.I.: Antimicrobial activity of essential oils on the native microflora of organic swiss chard. LWT Food Sci. Technol. 36(7), 679–684 (2003)

    Article  Google Scholar 

  41. Chen, C.S., Liau, W.Y., Tsai, G.J.: Antibacterial effects of N-sulfonated and N-sulfobenzoyl chitosan and application to oyster preservation. J. Food Prot. 61, 1124–1128 (1998)

    Article  Google Scholar 

  42. Liu, L., Li, S., Garreau, H., Vert, M.: Selective enzymatic degradations of poly (L-lactide) and poly (ε-caprolactone) blend films. Biomacromol 1, 350–359 (2000)

    Article  Google Scholar 

  43. Arkoun, M., Daigle, F., Heuzey, M.-C., Ajji, A.: Mechanism of action of electrospun chitosan-based nanofibers against meat spoilage and pathogenic bacteria. Molecules. 22(4), 585 (2017)

    Article  Google Scholar 

  44. Benhabiles, M.S., Salah, R., Lounici, H., Drouichhe, N., Goosen, M.F.A., Mameri, N.: Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 29, 48–56 (2012)

    Article  Google Scholar 

  45. Rabea, E.I., Badawy, M.E.T., Evens, C.V., Smagghe, G., Steurbaut, W.: Chitosan as antimicrobial agent: applications and mode of action. Biomacromol 4, 1457–1465 (2003)

    Article  Google Scholar 

  46. Xie, Y.J., Liu, X.F., Chen, Q.: Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity. Carbohydr. Polym. 69, 142–147 (2007)

    Article  Google Scholar 

  47. Malinowska-Pañczyk, E., Wojtasz-Pajk, A., Staroszczyk, H., Gottfried, K., Koodziejska, I.: Antimicrobial properties of chitosan solutions, chitosan films and gelatin-chitosan films. Polimery 60, 11–12 (2015)

    Google Scholar 

  48. Chung, Y.C., Su, Y.P., Chen, C.C., Jia, G., Wang, H.I., WU, J.C.G., Lin, J.G.: Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol. Sin. 25(7), 932 (2004)

    Google Scholar 

  49. No, H.K., Park, N.Y., Lee, S.H., Meyers, S.R.: Antibacterial activity of chitosans and oligomers with different molecular weights. Int. J. Food Microbiol. 74, 65–72 (2002)

    Article  Google Scholar 

  50. Divya, K., Vijayan, S., Tijith, K.G., Jisha, M.S.: Antimicrobial properties of chitosan nanoparticles: mode of action and factors affecting activity. Fibers Polym. 18, 221–230 (2017)

    Article  Google Scholar 

  51. Vilar-Junior, J.C., Ribeaux, D.R., Alves da Silva, C.A., Campos Takaki, D., Maria, G.: Physicochemical and antibacterial properties of chitosan extracted from waste shrimp shells. Int. J. Microbiol. (2016). https://doi.org/10.1155/2016/5127515

    Article  Google Scholar 

  52. Abbouni, B., Elhariry, H.M., Auling, G.: Arrest of cell cycle by inhibition of ribonucleotide reductase induces accumulation of NAD+ by Mn2+-supplemented growth of Corynebacterium ammoniagenes. Biotechnol. Lett. 25(2), 143–147 (2003)

    Article  Google Scholar 

  53. Jing, Y., Hao, Y., Qu, H., Shan, Y., Li, D., Du, R.: Studies on the antibacterial activities and mechanisms of chitosan obtained from cuticles of housefly larvae. Acta Biol. Hung. 58, 75–86 (2007)

    Article  Google Scholar 

  54. Lou, M.M., Zhu, B., Muhammad, I., Li, B., Xie, G.L., Wang, Y.L., Li, H.Y., Sun, G.C.: Antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot pathogen Burkholderia seminalis. Carbohydr. Res. 346, 1294–1301 (2011)

    Article  Google Scholar 

  55. Raafat, D., von Bargen, K., Haas, A.: Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol. 74, 3764–3773 (2008)

    Article  Google Scholar 

  56. Silva, L.P., Britto, D., Seleghim, M.H.R., Assis, O.B.G.: In vitro activity of water-soluble quaternary chitosan chloride salt against Ecoli. World J. Microbiol. Biotechnol. 26, 2089–2092 (2010)

    Article  Google Scholar 

  57. Eaton, P., Fernandes, J.C., Pereira, E., Pintado, M.E., Malcata, F.X.: Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy 108, 1128–1134 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Directorate General of Scientific Research and Technological Development (DGRSDT) and the Ministry of Higher Education and Scientific Research (MESRS), Algeria, for scientific support. Also, we are very thankful to the staff of the central laboratory of the Hospital of Sidi Bel Abbes city who facilitated the antibacterial tests and contributed to the successful of this study.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohra Bengharez.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest regarding this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 57.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudouaia, N., Benine, M.L., Fettal, N. et al. Antibacterial Action of Chitosan Produced from Shrimp Waste Against the Growth of Escherichia coli, Staphylococcus epidermidis, Proteus mirabilis and Pseudomonas aeruginosa. Waste Biomass Valor 15, 1267–1279 (2024). https://doi.org/10.1007/s12649-023-02220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02220-6

Keywords

Navigation