Skip to main content

Advertisement

Log in

Early detection of dementia using artificial intelligence and multimodal features with a focus on neuroimaging: A systematic literature review

  • Review Paper
  • Published:
Health and Technology Aims and scope Submit manuscript

Abstract

Purpose

This paper is a systematic literature review of the use of artificial intelligence techniques to detect early dementia. It focuses on multi-modal feature analysis in combination with neuroimaging. The paper examines what past research suggests about issues in the field, what dementia types researchers focus on, what are state-of-the-art methods in the different dementia detection groups, what combinations of modalities (images, text, speech, etc.) are frequently used, how models are evaluated and validated, what datasets researchers use, what are common pre-processing and feature extraction from neuroimages techniques, what are key issues in this research area, and what are potential future research areas.

Materials and methods

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method was used to collect and summarize research in the scope of the defined problem. This study investigated early dementia detection problem from a multi-modal perspective, with neuroimaging being used as one of the modalities.

Results

Five databases were queried and 2881 sources were identified and processed in the literature review. 59 sources were selected after eligibility assessment. The study identified all points defined in the purpose of the research.

Conclusions

The main findings of the study were that Alzheimer’s disease and Mild Cognitive Impairment (MCI) are the most researched dementia types in the field; typical choice for dementia detection is Machine Learning (ML) methods; the most popular modalities combination is T1w + Fluorodeoxyglucose - Positron Emission Tomography (FDG-PET); accuracy, sensitivity and specificity are the main evaluation metrics used by the researchers; k-fold validation is being used the most; Alzheimer’s disease neuroimaging initiative (ADNI) is the most used dataset by researchers; intensity and spacial normalization, skull stripping and segmentation are the most common pre-processing techniques for neuroimages; voxel average intensities are being used the most as features in classification extracted from neuroimages; explainability still persists as one of the main issues in adoption of developed methods in clinical practise; there is a lack of studies on Vascular dementia, Frontotemporal dementia, Parkinson’s disease and Huntington’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

There is no data associated with the article.

References

  1. World Health Organization. Dementia. 2021. https://www.who.int/en/news-room/fact-sheets/detail/dementia. Accessed 3 Mar 2023.

  2. NIH. What is dementia? Symptoms, types, and diagnosis. 2022. https://www.nia.nih.gov/health/what-is-dementia. Accessed 3 Mar 2023.

  3. U.S Department of Health and Human Services (HHS). What is dementia? 2022. https://www.alzheimers.gov/alzheimers-dementias/what-is-dementia. Accessed 3 Mar 2023.

  4. Tăuţan A-M, Ionescu B, Santarnecchi E. Artificial intelligence in neurodegenerative diseases: a review of available tools with a focus on machine learning techniques. Artif Intell Med. 2021;117:102081. https://doi.org/10.1016/j.artmed.2021.102081.

    Article  PubMed  Google Scholar 

  5. Li R, Wang X, Lawler K, Garg S, Bai Q, Alty J. Applications of artificial intelligence to aid early detection of dementia: a scoping review on current capabilities and future directions. J Biomed Inform. 2022;127:104030. https://doi.org/10.1016/j.jbi.2022.104030.

    Article  PubMed  Google Scholar 

  6. Battineni G, Chintalapudi N, Hossain MA, Losco G, Ruocco C, Sagaro GG, Traini E, Nittari G, Amenta F. Artificial intelligence models in the diagnosis of adult-onset dementia disorders: a review. Bioengineering. 2022;9(8):370. https://doi.org/10.3390/bioengineering9080370.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Saravanan S, Ramkumar K, Adalarasu K, Sivanandam V, Kumar SR, Stalin S, Amirtharajan R. A systematic review of artificial intelligence (AI) based approaches for the diagnosis of Parkinson’s disease. Arch Comput Meth Eng. 2022;29(6):3639–53. https://doi.org/10.1007/s11831-022-09710-1.

    Article  Google Scholar 

  8. Goyal P, Rani R, Singh K. State-of-the-art machine learning techniques for diagnosis of Alzheimer’s disease from MR-images: a systematic review. Arch Comput Meth Eng. 2021;29(5):2737–80. https://doi.org/10.1007/s11831-021-09674-8.

    Article  Google Scholar 

  9. Billeci L, Badolato A, Bachi L, Tonacci A. Machine learning for the classification of Alzheimer’s disease and its prodromal stage using brain diffusion tensor imaging data: a systematic review. Processes. 2020;8(9):1071. https://doi.org/10.3390/pr8091071.

    Article  Google Scholar 

  10. Loh HW, Hong W, Ooi CP, Chakraborty S, Barua PD, Deo RC, Soar J, Palmer EE, Acharya UR. Application of deep learning models for automated identification of Parkinson’s disease: a review (2011–2021). Sensors. 2021;21(21):7034. https://doi.org/10.3390/s21217034.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fathi S, Ahmadi M, Dehnad A. Early diagnosis of Alzheimer’s disease based on deep learning: a systematic review. Comput Biol Med. 2022;146:105634. https://doi.org/10.1016/j.compbiomed.2022.105634.

    Article  PubMed  Google Scholar 

  12. Pereira CR, Pereira DR, Weber SA, Hook C, de Albuquerque VHC, Papa JP. A survey on computer-assisted Parkinson’s disease diagnosis. Artif Intell Med. 2019;95:48–63. https://doi.org/10.1016/j.artmed.2018.08.007.

    Article  PubMed  Google Scholar 

  13. Khan P, Kader MF, Islam SMR, Rahman AB, Kamal MS, Toha MU, Kwak K-S. Machine learning and deep learning approaches for brain disease diagnosis: principles and recent advances. IEEE Access. 2021;9:37622–55. https://doi.org/10.1109/access.2021.3062484.

    Article  Google Scholar 

  14. Ahmed MR, Zhang Y, Feng Z, Lo B, Inan OT, Liao H. Neuroimaging and machine learning for dementia diagnosis: recent advancements and future prospects. IEEE Rev Biomed Eng. 2019;12:19–33. https://doi.org/10.1109/rbme.2018.2886237.

    Article  PubMed  Google Scholar 

  15. Agarwal D, Marques G, de la Torre-Díez I, Martin MAF, Zapiraín BG, Rodríguez FM. Transfer learning for Alzheimer’s disease through neuroimaging biomarkers: a systematic review. Sensors. 2021;21(21):7259. https://doi.org/10.3390/s21217259.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blanco K, Salcidua S, Orellana P, Sauma-Pérez T, León T, Steinmetz LCL, Ibañez A, Duran-Aniotz C, de la Cruz R. Systematic review: fluid biomarkers and machine learning methods to improve the diagnosis from mild cognitive impairment to Alzheimer’s disease. Alzheimers Res Ther. 2023;15(1). https://doi.org/10.1186/s13195-023-01304-8.

  17. Zhao Z, Chuah JH, Lai KW, Chow C-O, Gochoo M, Dhanalakshmi S, Wang N, Bao W, Wu X. Conventional machine learning and deep learning in Alzheimer’s disease diagnosis using neuroimaging: a review. Front Comput Neurosci. 2023;17. https://doi.org/10.3389/fncom.2023.1038636.

  18. Viswan V, Shaffi N, Mahmud M, Subramanian K, Hajamohideen F. Explainable artificial intelligence in Alzheimer’s disease classification: a systematic review. Cogn Comput. 2023. https://doi.org/10.1007/s12559-023-10192-x.

    Article  Google Scholar 

  19. Aggarwal N, Saini BS, Gupta S. Role of artificial intelligence techniques and neuroimaging modalities in detection of Parkinson’s disease: a systematic review. Cogn Comput. 2023. https://doi.org/10.1007/s12559-023-10175-y.

    Article  Google Scholar 

  20. Arya AD, Verma SS, Chakarabarti P, Chakrabarti T, Elngar AA, Kamali A-M, Nami M. A systematic review on machine learning and deep learning techniques in the effective diagnosis of Alzheimer’s disease. Brain Inform. 2023;10(1). https://doi.org/10.1186/s40708-023-00195-7.

  21. Huang G, Li R, Bai Q, Alty J. Multimodal learning of clinically accessible tests to aid diagnosis of neurodegenerative disorders: a scoping review. Health Inf Sci Syst. 2023;11(1). https://doi.org/10.1007/s13755-023-00231-0.

  22. Muhammed Niyas K, Thiyagarajan P. A systematic review on early prediction of mild cognitive impairment to Alzheimer’s using machine learning algorithms. Int J Intell Netw. 2023;4:74–88. https://doi.org/10.1016/j.ijin.2023.03.004.

    Article  Google Scholar 

  23. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N. Dementia prevention, intervention, and care: 2020 report of the lancet commission. The Lancet. 2020;396(10248):413–46. https://doi.org/10.1016/s0140-6736(20)30367-6.

    Article  Google Scholar 

  24. van de Vorst IE, Koek HL, de Vries R, Bots ML, Reitsma JB, Vaartjes I. Effect of vascular risk factors and diseases on mortality in individuals with dementia: a systematic review and meta-analysis. J Am Geriatr Soc. 2015;64(1):37–46. https://doi.org/10.1111/jgs.13835.

    Article  PubMed  Google Scholar 

  25. Anstey KJ, Cherbuin N, Budge M, Young J. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev. 2011;12(5):e426–43. https://doi.org/10.1111/j.1467-789x.2010.00825.x.

    Article  CAS  PubMed  Google Scholar 

  26. Anstey KJ, von Sanden C, Salim A, O’Kearney R. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol. 2007;166(4):367–78. https://doi.org/10.1093/aje/kwm116.

    Article  PubMed  Google Scholar 

  27. Gardener H, Wright CB, Rundek T, Sacco RL. Brain health and shared risk factors for dementia and stroke. Nat Rev Neurol. 2015;11(11):651–7. https://doi.org/10.1038/nrneurol.2015.195.

    Article  CAS  PubMed  Google Scholar 

  28. Morris JC. The clinical dementia rating (CDR). Neurology. 1993;43(11):2412.2-2412-a. https://doi.org/10.1212/wnl.43.11.2412-a.

    Article  Google Scholar 

  29. Folstein MF, Folstein SE, McHugh PR. Mini-mental state. J Psychiatr Res. 1975;12(3):189–98. https://doi.org/10.1016/0022-3956(75)90026-6.

    Article  CAS  PubMed  Google Scholar 

  30. Cullen B, O’Neill B, Evans JJ, Coen RF, Lawlor BA. A review of screening tests for cognitive impairment. J Neurol Neurosurg Psychiatry. 2007;78(8):790–9. https://doi.org/10.1136/jnnp.2006.095414.

    Article  PubMed  Google Scholar 

  31. Kueper JK, Speechley M, Montero-Odasso M. The Alzheimer’s disease assessment scale-cognitive subscale (ADAS-COG): Modifications and responsiveness in pre-dementia populations. A narrative review. J Alzheimers Dis. 2018;63(2):423–44. https://doi.org/10.3233/JAD-170991.

    Article  PubMed  PubMed Central  Google Scholar 

  32. King JH, Gfeller JD, Davis HP. Detecting simulated memory impairment with the Rey auditory verbal learning test: implications of base rates and study generalizability. J Clin Exp Neuropsychol. 1998;20(5):603–12. https://doi.org/10.1076/jcen.20.5.603.1124.

    Article  CAS  PubMed  Google Scholar 

  33. Brañez-Condorena A, Soriano-Moreno DR, Navarro-Flores A, Solis-Chimoy B, Diaz-Barrera ME, Taype-Rondan A. Accuracy of the geriatric depression scale (GDS)-4 and GDS-5 for the screening of depression among older adults: a systematic review and meta-analysis. PLoS ONE. 2021;16(7):e0253899. https://doi.org/10.1371/journal.pone.0253899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. González DA, Gonzales MM, Resch ZJ, Sullivan AC, Soble JR. Comprehensive evaluation of the functional activities questionnaire (FAQ) and its reliability and validity. Assessment. 2021;29(4):748–63. https://doi.org/10.1177/1073191121991215.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kaufer DI, Cummings JL, Ketchel P, Smith V, MacMillan A, Shelley T, Lopez OL, DeKosky ST. Validation of the NPI-Q, a brief clinical form of the neuropsychiatric inventory. J Neuropsychiatry Clin Neurosci. 2000;12(2):233–9. https://doi.org/10.1176/jnp.12.2.233.

    Article  CAS  PubMed  Google Scholar 

  36. NHS. Symptoms of dementia. 2022. https://www.nhs.uk/conditions/dementia/symptoms/. Accessed 3 Mar 2023.

  37. Castellani RJ, Rolston RK, Smith MA. Alzheimer disease. Dis Mon. 2010;56(9):484–546. https://doi.org/10.1016/j.disamonth.2010.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  38. O’Brien JT, Thomas A. Vascular dementia. The Lancet. 2015;386(10004):1698–706. https://doi.org/10.1016/s0140-6736(15)00463-8.

    Article  Google Scholar 

  39. Walker Z, Possin KL, Boeve BF, Aarsland D. Lewy body dementias. The Lancet. 2015;386(10004):1683–97. https://doi.org/10.1016/s0140-6736(15)00462-6.

    Article  Google Scholar 

  40. Parkinson’s Foundation. Parkinson’s disease vs. Parkinsonism. 2022. https://www.parkinson.org/library/fact-sheets/parkinsonism. Accessed 3 Mar 2023.

  41. Bang J, Spina S, Miller BL. Frontotemporal dementia. The Lancet. 2015;386(10004):1672–82. https://doi.org/10.1016/s0140-6736(15)00461-4.

    Article  Google Scholar 

  42. Walker FO. Huntington’s disease. The Lancet. 2007;369(9557):218–28. https://doi.org/10.1016/s0140-6736(07)60111-1.

    Article  CAS  Google Scholar 

  43. McArthur JC. HIV dementia: an evolving disease. J Neuroimmunol. 2004;157(1–2):3–10. https://doi.org/10.1016/j.jneuroim.2004.08.042.

    Article  CAS  PubMed  Google Scholar 

  44. Nath A, Schiess N, Venkatesan A, Rumbaugh J, Sacktor N, Mcarthur J. Evolution of HIV dementia with HIV infection. Int Rev Psychiatry. 2008;20(1):25–31. https://doi.org/10.1080/09540260701861930.

    Article  PubMed  Google Scholar 

  45. Medspace. FDA clears 5-minute test for early dementia. 2022. https://www.medscape.com/viewarticle/961277. Accessed 3 Mar 2023.

  46. Winder Z, Sudduth TL, Anderson S, Patel E, Neltner J, Martin BJ, Snyder KE, Abner EL, Jicha GA, Nelson PT, Wilcock DM. Examining the association between blood-based biomarkers and human post mortem neuropathology in the University of Kentucky Alzheimer’s disease research center autopsy cohort. Alzheimers Dement. 2022;19(1):67–78. https://doi.org/10.1002/alz.12639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alzheimer’s Society. Genetic testing for dementia. 2022. https://www.alzheimers.org.uk/about-dementia/risk-factors-and-prevention/genetic-testing-dementia’. Accessed 3 Mar 2023.

  48. Knopman DS, Petersen RC, Jack CR. A brief history of “Alzheimer disease’’. Neurology. 2019;92(22):1053–9. https://doi.org/10.1212/wnl.0000000000007583.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dembitsky VM, Dzhemileva L, Gloriozova T, D’yakonov V. Natural and synthetic drugs used for the treatment of the dementia. Biochem Biophys Res Commun. 2020;524(3):772–83. https://doi.org/10.1016/j.bbrc.2020.01.123.

    Article  CAS  PubMed  Google Scholar 

  50. Hafdi M, Hoevenaar-Blom MP, Richard E. Multi-domain interventions for the prevention of dementia and cognitive decline. Cochrane Database Syst Rev. 2021;2021(11). https://doi.org/10.1002/14651858.cd013572.pub2.

  51. Amieva H, Robert PH, Grandoulier A-S, Meillon C, Rotrou JD, Andrieu S, Berr C, Desgranges B, Dubois B, Girtanner C, Joël M-E, Lavallart B, Nourhashemi F, Pasquier F, Rainfray M, Touchon J, Chêne G, Dartigues J-F. Group and individual cognitive therapies in Alzheimer’s disease: the ETNA3 randomized trial. Int Psychogeriatr. 2015;28(5):707–17. https://doi.org/10.1017/s1041610215001830.

    Article  PubMed  Google Scholar 

  52. Cammisuli DM, Cipriani G, Giusti EM, Castelnuovo G. Effects of reminiscence therapy on cognition, depression and quality of life in elderly people with Alzheimer’s disease: a systematic review of randomized controlled trials. J Clin Med. 2022;11(19):5752. https://doi.org/10.3390/jcm11195752.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Spector A, Thorgrimsen L, Woods B, Royan L, Davies S, Butterworth M, Orrell M. Efficacy of an evidence-based cognitive stimulation therapy programme for people with dementia. Br J Psychiatry. 2003;183(3):248–54. https://doi.org/10.1192/bjp.183.3.248.

    Article  PubMed  Google Scholar 

  54. Taylor J-P, McKeith IG, Burn DJ, Boeve BF, Weintraub D, Bamford C, Allan LM, Thomas AJ, O’Brien JT. New evidence on the management of Lewy body dementia. Lancet Neurol. 2020;19(2):157–69. https://doi.org/10.1016/s1474-4422(19)30153-x.

    Article  PubMed  Google Scholar 

  55. Moreno-Morales C, Calero R, Moreno-Morales P, Pintado C. Music therapy in the treatment of dementia: a systematic review and meta-analysis. Front Med. 2020;7. https://doi.org/10.3389/fmed.2020.00160.

  56. Pradhan AU, Uwishema O, Onyeaka H, Adanur I, Dost B. A review of stem cell therapy: an emerging treatment for dementia in Alzheimer’s and Parkinson’s disease. Brain Behav. 2022;12(9). https://doi.org/10.1002/brb3.2740.

  57. NHS. What are the treatments for dementia? 2022. https://www.nhs.uk/conditions/dementia/treatment/. Accessed 3 Mar 2023.

  58. Orgeta V, McDonald KR, Poliakoff E, Hindle JV, Clare L, Leroi I. Cognitive training interventions for dementia and mild cognitive impairment in Parkinson’s disease. Cochrane Database Syst Rev. 2020;2020(2). https://doi.org/10.1002/14651858.cd011961.pub2.

  59. Alzheimer Europe. Prevalence of dementia in Europe. 2019. https://www.Alzheimer-europe.org/dementia/prevalence-dementia-europe. Accessed 3 Mar 2023.

  60. Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D, Kirabali T, Krolak-Salmon P, Rossini PM, Ferretti MT, Lanman L, Chadha AS, van der Flier WM. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement. 2022. https://doi.org/10.1002/alz.12694.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fymat A. Dementia: a review. Journal of Clinical Psychiatry and Neuroscience. 2018;1(3):27–34. https://www.pulsus.com/scholarly-articles/dementia-a-review-5127.html. Accessed 3 Mar 2023.

  62. Alzheimer’s Association. Mild cognitive impairment (MCI). 2022. https://www.alz.org/alzheimers-dementia/what-is-dementia/related_conditions/mild-cognitive-impairment. Accessed 3 Mar 2023.

  63. Alzheimer’s Association. Alzheimer’s disease facts and figures. 2022. https://www.alz.org/alzheimers-dementia/facts-figures. Accessed 3 Mar 2023.

  64. World Health Organization. The top 10 causes of death. 2019. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 3 Mar 2023.

  65. Jia J, Wei C, Chen S, Li F, Tang Y, Qin W, Zhao L, Jin H, Xu H, Wang F, Zhou A, Zuo X, Wu L, Han Y, Han Y, Huang L, Wang Q, Li D, Chu C, Shi L, Gong M, Du Y, Zhang J, Zhang J, Zhou C, Lv J, Lv Y, Xie H, Ji Y, Li F, Yu E, Luo B, Wang Y, Yang S, Qu Q, Guo Q, Liang F, Zhang J, Tan L, Shen L, Zhang K, Zhang J, Peng D, Tang M, Lv P, Fang B, Chu L, Jia L, Gauthier S. The cost of Alzheimer’s disease in China and re-estimation of costs worldwide. Alzheimers Dement. 2018;14(4):483–91. https://doi.org/10.1016/j.jalz.2017.12.006.

    Article  PubMed  Google Scholar 

  66. Liu Y, Yue L, Xiao S, Yang W, Shen D, Liu M. Assessing clinical progression from subjective cognitive decline to mild cognitive impairment with incomplete multi-modal neuroimages. Med Image Anal. 2022;75:102266. https://doi.org/10.1016/j.media.2021.102266.

    Article  PubMed  Google Scholar 

  67. Hao X, Bao Y, Guo Y, Yu M, Zhang D, Risacher SL, Saykin AJ, Yao X, Shen L. Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer’s disease. Med Image Anal. 2020;60:101625. https://doi.org/10.1016/j.media.2019.101625.

    Article  PubMed  Google Scholar 

  68. Liu Y, Fan L, Zhang C, Zhou T, Xiao Z, Geng L, Shen D. Incomplete multi-modal representation learning for Alzheimer’s disease diagnosis. Med Image Anal. 2021;69:101953. https://doi.org/10.1016/j.media.2020.101953.

    Article  PubMed  Google Scholar 

  69. Hojjati SH, Ebrahimzadeh A, Khazaee A, Babajani-Feremi A. Predicting conversion from MCI to AD by integrating rs-fMRI and structural MRI. Comput Biol Med. 2018;102:30–9. https://doi.org/10.1016/j.compbiomed.2018.09.004.

    Article  PubMed  Google Scholar 

  70. Zhang J, He X, Liu Y, Cai Q, Chen H, Qing L. Multi-modal cross-attention network for Alzheimer’s disease diagnosis with multi-modality data. Comput Biol Med. 2023;162:107050. https://doi.org/10.1016/j.compbiomed.2023.107050.

    Article  CAS  PubMed  Google Scholar 

  71. Yan B, Li Y, Li L, Yang X, Qiang Li T, Yang G, Jiang M. Quantifying the impact of pyramid squeeze attention mechanism and filtering approaches on Alzheimer’s disease classification. Comput Biol Med. 2022;148:105944. https://doi.org/10.1016/j.compbiomed.2022.105944.

    Article  CAS  PubMed  Google Scholar 

  72. Tu Y, Lin S, Qiao J, Zhuang Y, Zhang P. Alzheimer’s disease diagnosis via multimodal feature fusion. Comput Biol Med. 2022;148:105901. https://doi.org/10.1016/j.compbiomed.2022.105901.

    Article  PubMed  Google Scholar 

  73. Dong A, Zhang G, Liu J, Wei Z. Latent feature representation learning for Alzheimer’s disease classification. Comput Biol Med. 2022;150:106116. https://doi.org/10.1016/j.compbiomed.2022.106116.

    Article  PubMed  Google Scholar 

  74. Zhang Y, He X, Chan YH, Teng Q, Rajapakse JC. Multi-modal graph neural network for early diagnosis of Alzheimer’s disease from SMRI and pet scans. Comput Biol Med. 2023;164:107328. https://doi.org/10.1016/j.compbiomed.2023.107328.

    Article  PubMed  Google Scholar 

  75. Leng Y, Cui W, Peng Y, Yan C, Cao Y, Yan Z, Chen S, Jiang X, Zheng J. Multimodal cross enhanced fusion network for diagnosis of Alzheimer’s disease and subjective memory complaints. Comput Biol Med. 2023;157:106788. https://doi.org/10.1016/j.compbiomed.2023.106788.

    Article  PubMed  Google Scholar 

  76. Pahuja G, Prasad B. Deep learning architectures for Parkinson’s disease detection by using multi-modal features. Comput Biol Med. 2022;146:105610. https://doi.org/10.1016/j.compbiomed.2022.105610.

    Article  PubMed  Google Scholar 

  77. Lahmiri S, Shmuel A. Performance of machine learning methods applied to structural MRI and ADAS cognitive scores in diagnosing Alzheimer’s disease. Biomed Signal Process Control. 2019;52:414–9. https://doi.org/10.1016/j.bspc.2018.08.009.

    Article  Google Scholar 

  78. Altaf T, Anwar SM, Gul N, Majeed MN, Majid M. Multi-class Alzheimer’s disease classification using image and clinical features. Biomed Signal Process Control. 2018;43:64–74. https://doi.org/10.1016/j.bspc.2018.02.019.

    Article  Google Scholar 

  79. Kong Z, Zhang M, Zhu W, Yi Y, Wang T, Zhang B. Multi-modal data Alzheimer’s disease detection based on 3D convolution. Biomed Signal Process Control. 2022;75:103565. https://doi.org/10.1016/j.bspc.2022.103565.

    Article  Google Scholar 

  80. Castellazzi G, Cuzzoni MG, Ramusino MC, Martinelli D, Denaro F, Ricciardi A, Vitali P, Anzalone N, Bernini S, Palesi F, Sinforiani E, Costa A, Micieli G, D’Angelo E, Magenes G, Wheeler-Kingshott CAMG. A machine learning approach for the differential diagnosis of Alzheimer and vascular dementia fed by MRI selected features. Front Neuroinform. 2020;14. https://doi.org/10.3389/fninf.2020.00025.

  81. Jin L, Zhao K, Zhao Y, Che T, Li S. A hybrid deep learning method for early and late mild cognitive impairment diagnosis with incomplete multimodal data. Front Neuroinform. 2022;16. https://doi.org/10.3389/fninf.2022.843566.

  82. Kumari R, Nigam A, Pushkar S. An efficient combination of quadruple biomarkers in binary classification using ensemble machine learning technique for early onset of Alzheimer disease. Neural Comput Appl. 2022;34(14):11865–84. https://doi.org/10.1007/s00521-022-07076-w.

    Article  Google Scholar 

  83. Jia H, Lao H. Deep learning and multimodal feature fusion for the aided diagnosis of Alzheimer’s disease. Neural Comput Appl. 2022;34(22):19585–98. https://doi.org/10.1007/s00521-022-07501-0.

    Article  Google Scholar 

  84. Divya R, Shantha Selva Kumari R, Alzheimer’s Disease Neuroimaging Initiative. Genetic algorithm with logistic regression feature selection for Alzheimer’s disease classification. Neural Comput Appl. 2021;33(14):8435–44. https://doi.org/10.1007/s00521-020-05596-x.

    Article  Google Scholar 

  85. Zhu Q, Yuan N, Huang J, Hao X, Zhang D. Multi-modal AD classification via self-paced latent correlation analysis. Neurocomputing. 2019;355:143–54. https://doi.org/10.1016/j.neucom.2019.04.066.

    Article  Google Scholar 

  86. Segovia F, Ramírez J, Castillo-Barnes D, Salas-Gonzalez D, Gómez-Río M, Sopena-Novales P, Phillips C, Zhang Y, Górriz J. Multivariate analysis of dual-point amyloid PET intended to assist the diagnosis of Alzheimer’s disease. Neurocomputing. 2020;417:1–9. https://doi.org/10.1016/j.neucom.2020.06.081.

    Article  Google Scholar 

  87. Abdelaziz M, Wang T, Elazab A. Alzheimer’s disease diagnosis framework from incomplete multimodal data using convolutional neural networks. J Biomed Inform. 2021;121:103863. https://doi.org/10.1016/j.jbi.2021.103863.

    Article  PubMed  Google Scholar 

  88. Song X, Elazab A, Zhang Y. Classification of mild cognitive impairment based on a combined high-order network and graph convolutional network. IEEE Access. 2020;8:42816–27. https://doi.org/10.1109/access.2020.2974997.

    Article  Google Scholar 

  89. Perez-Gonzalez J, Jiménez-Ángeles L, Saavedra KR, Morales EB, Medina-Bañuelos V. Mild cognitive impairment classification using combined structural and diffusion imaging biomarkers. Phys Med Biol. 2021;66(15):155010. https://doi.org/10.1088/1361-6560/ac0e77.

    Article  Google Scholar 

  90. Dwivedi S, Goel T, Tanveer M, Murugan R, Sharma R. Multimodal fusion-based deep learning network for effective diagnosis of Alzheimer’s disease. IEEE Multimedia. 2022;29(2):45–55. https://doi.org/10.1109/mmul.2022.3156471.

    Article  Google Scholar 

  91. Ye H, Zhu Q, Yao Y, Jin Y, Zhang D. Pairwise feature-based generative adversarial network for incomplete multi-modal Alzheimer’s disease diagnosis. Vis Comput. 2022. https://doi.org/10.1007/s00371-021-02354-5.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Asim Y, Raza B, Malik AK, Rathore S, Hussain L, Iftikhar MA. A multi-modal, multi-atlas-based approach for Alzheimer detection via machine learning. Int J Imaging Syst Technol. 2018;28(2):113–23. https://doi.org/10.1002/ima.22263.

    Article  Google Scholar 

  93. Bi X-A, Zhou W, Li L, Xing Z. Detecting risk gene and pathogenic brain region in EMCI using a novel GERF algorithm based on brain imaging and genetic data. IEEE J Biomed Health Inform. 2021;25(8):3019–28. https://doi.org/10.1109/jbhi.2021.3067798.

    Article  PubMed  Google Scholar 

  94. Angkoso CV, Tjahyaningtijas HPA, Adrianto Y, Sensusiati AD, Purnama IKE, Purnomo MH. Multi-features fusion in multi-plane MRI images for Alzheimer’s disease classification. Int J Intell Eng Syst. 2022;15(4). https://doi.org/10.22266/ijies2022.0831.17.

  95. Liu M, Cheng D, Wang K, Wang Y. Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis. Neuroinformatics. 2018;16(3–4):295–308. https://doi.org/10.1007/s12021-018-9370-4.

    Article  PubMed  Google Scholar 

  96. Pahuja G, Nagabhushan T, Prasad B, Pushkarna R. Early detection of Parkinson’s disease through multimodal features using machine learning approaches. Int J Signal Imaging Syst Eng. 2018;11(1):31. https://doi.org/10.1504/ijsise.2018.090605.

    Article  Google Scholar 

  97. Liu J, Tan G, Lan W, Wang J. Identification of early mild cognitive impairment using multi-modal data and graph convolutional networks. BMC Bioinformatics. 2020;21(S6). https://doi.org/10.1186/s12859-020-3437-6.

  98. Yuan S, Li H, Wu J, Sun X. Classification of mild cognitive impairment with multimodal data using both labeled and unlabeled samples. IEEE/ACM Trans Comput Biol Bioinf. 2021;18(6):2281–90. https://doi.org/10.1109/tcbb.2021.3053061.

    Article  CAS  Google Scholar 

  99. Yang B-H, Chen J-C, Chou W-H, Huang W-S, Fuh J-L, Liu R, Wu C-H. Classification of Alzheimer’s disease from 18f-FDG and 11c-PiB PET imaging biomarkers using support vector machine. J Med Biol Eng. 2020;40(4):545–54. https://doi.org/10.1007/s40846-020-00548-1.

    Article  Google Scholar 

  100. Zhang Y, Wang S, Xia K, Jiang Y, Qian P. Alzheimer’s disease multiclass diagnosis via multimodal neuroimaging embedding feature selection and fusion. Inf Fusion. 2021;66:170–83. https://doi.org/10.1016/j.inffus.2020.09.002.

    Article  Google Scholar 

  101. Zhang Y, He X, Liu Y, Ong CZL, Liu Y, Teng Q. An end-to-end multimodal 3D CNN framework with multi-level features for the prediction of mild cognitive impairment. Knowl-Based Syst. 2023;281:111064. https://doi.org/10.1016/j.knosys.2023.111064.

    Article  Google Scholar 

  102. Gao X, Shi F, Shen D, Liu M. Multimodal transformer network for incomplete image generation and diagnosis of Alzheimer’s disease. Comput Med Imaging Graph. 2023;110:102303. https://doi.org/10.1016/j.compmedimag.2023.102303.

    Article  PubMed  Google Scholar 

  103. Chen H, Guo H, Xing L, Chen D, Yuan T, Zhang Y, Zhang X. Multimodal predictive classification of Alzheimer’s disease based on attention-combined fusion network: integrated neuroimaging modalities and medical examination data. IET Image Proc. 2023;17(11):3153–64. https://doi.org/10.1049/ipr2.12841.

    Article  CAS  Google Scholar 

  104. Ding D, Zeng X, Wang X, Zhang J. AMIM: an adaptive weighted multimodal integration model for Alzheimer’s disease classification. Int J Adv Comput Sci Appl. 2023;14(1). https://doi.org/10.14569/IJACSA.2023.01401108

  105. Ismail WN, Fathimathul Rajeena PP, Ali MAS. A meta-heuristic multi-objective optimization method for Alzheimer’s disease detection based on multi-modal data. Mathematics. 2023;11(4):957. https://doi.org/10.3390/math11040957.

    Article  Google Scholar 

  106. Holzinger A, Saranti A, Molnar C, Biecek P, Samek W. Explainable AI methods - a brief overview. In: xxAI - Beyond Explainable AI. Springer International Publishing; 2022. p. 13–38. https://doi.org/10.1007/978-3-031-04083-2_2.

  107. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int J Comput Vision. 2019;128(2):336–59. https://doi.org/10.1007/s11263-019-01228-7.

    Article  Google Scholar 

  108. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, Luca MD, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, Stefano ND, Brady JM, Matthews PM. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–19. https://doi.org/10.1016/j.neuroimage.2004.07.051.

    Article  PubMed  Google Scholar 

  109. The General Hospital Corporation. Freesurfer. 2023. https://surfer.nmr.mgh.harvard.edu/. Accessed 3 Mar 2023.

  110. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. https://doi.org/10.1086/519795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tripathi M, Vibha D. Reversible dementias. Indian Journal of Psychiatry. 2009;51(Suppl 1):S52-5.

    PubMed  PubMed Central  Google Scholar 

  112. Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack CR, Jagust W, Trojanowski JQ, Toga AW, Beckett L. Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s disease neuroimaging initiative (ADNI). Alzheimers Dement. 2005;1(1):55–66. https://doi.org/10.1016/j.jalz.2005.06.003.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Chee MWL, Zheng H, Goh JOS, Park D, Sutton BP. Brain structure in young and old East Asians and Westerners: comparisons of structural volume and cortical thickness. J Cogn Neurosci. 2011;23(5):1065–79. https://doi.org/10.1162/jocn.2010.21513.

    Article  PubMed  Google Scholar 

  114. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial networks. arXiv:1406.2661 [Preprint]. 2014. Available from: https://arxiv.org/abs/1406.2661. Accessed 3 Mar 2023.

  115. Biondi A, Laiou P, Bruno E, Viana PF, Schreuder M, Hart W, Nurse E, Pal DK, Richardson MP. Remote and long-term self-monitoring of electroencephalographic and noninvasive measurable variables at home in patients with epilepsy (EEG@HOME): Protocol for an observational study. JMIR Research Protocols. 2021;10(3):e25309. https://doi.org/10.2196/25309.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Marek K, Chowdhury S, Siderowf A, Lasch S, Coffey CS, Caspell-Garcia C, Simuni T, Jennings D, Tanner CM, Trojanowski JQ, Shaw LM, Seibyl J, Schuff N, Singleton A, Kieburtz K, Toga AW, Mollenhauer B, Galasko D, Chahine LM, Weintraub D, Foroud T, Tosun-Turgut D, Poston K, Arnedo V, Frasier M, Sherer T. The Parkinson’s progression markers initiative (PPMI) - establishing a PD biomarker cohort. Ann Clin Transl Neurol. 2018;5(12):1460–77. https://doi.org/10.1002/acn3.644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hudson P, Lautenschlager NT, Lenzo N, Martins RN, Maruff P, Masters C, Milner A, Pike K, Rowe C, Savage G, Szoeke C, Taddei K, Villemagne V, Woodward M, Ames D. The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int Psychogeriatr. 2009;21(4):672–87. https://doi.org/10.1017/S1041610209009405.

    Article  PubMed  Google Scholar 

  118. Xiao S, Lewis M, Mellor D, McCabe M, Byrne L, Wang T, Wang J, Zhu M, Cheng Y, Yang C, Dong S. The China longitudinal ageing study: overview of the demographic, psychosocial and cognitive data of the Shanghai sample. J Ment Health. 2016;25(2):131–6. https://doi.org/10.3109/09638237.2015.1124385.

    Article  PubMed  Google Scholar 

  119. Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL. Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci. 2007;19(9):1498–507. https://doi.org/10.1162/jocn.2007.19.9.1498.

    Article  PubMed  Google Scholar 

  120. Juntu J, Sijbers J, Dyck D, Gielen J. Bias field correction for MRI images. In: Advances in Soft Computing. Springer, Berlin Heidelberg. p. 543–51. https://doi.org/10.1007/3-540-32390-2_64.

  121. UCLA Brain Mapping Center. ICBM template. 2023. http://www.bmap.ucla.edu/portfolio/atlases/ICBM_Template/. Accessed 3 Mar 2023.

  122. Jia H, Wang Y, Duan Y, Xiao H. Alzheimer’s disease classification based on image transformation and features fusion. Comput Math Methods Med. 2021;2021:1–11. https://doi.org/10.1155/2021/9624269.

    Article  Google Scholar 

  123. Rolls ET, Huang C-C, Lin C-P, Feng J, Joliot M. Automated anatomical labelling Atlas 3. Neuroimage. 2020;206:116189. https://doi.org/10.1016/j.neuroimage.2019.116189.

    Article  PubMed  Google Scholar 

  124. Magnetic Resonance - Technology Information Portal. Eigenvalues. 2023. https://www.mr-tip.com/serv1.php?type=db1&dbs=Eigenvalues. Accessed 3 Mar 2023.

  125. Centre for Human Neuroimaging. SPM. 2023. https://www.fil.ion.ucl.ac.uk/spm/. Accessed 3 Mar 2023.

  126. Center for Information Technology. MIPAV. 2023. https://mipav.cit.nih.gov/. Accessed 3 Mar 2023.

  127. Yan C-G, Wang X-D, Zuo X-N, Zang Y-F. DPABI: data processing and analysis for (resting-state) brain imaging. Neuroinformatics. 2016;14(3):339–51. https://doi.org/10.1007/s12021-016-9299-4.

    Article  PubMed  Google Scholar 

  128. Wang J, Wang X, Xia M, Liao X, Evans A, He Y. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci. 2015;9. https://doi.org/10.3389/fnhum.2015.00386.

  129. National Institutes of Health, Medical College of Wisconsin. MIPAV. 2023. https://afni.nimh.nih.gov/. Accessed 3 Mar 2023.

Download references

Funding

No funding was used to support this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Rytis Maskeliunas; methodology, Rytis Maskeliunas and Robertas Damaševičius; validation, Robertas Damaševičius, Rytis Maskeliunas and Ovidijus Grigas; formal analysis, Robertas Damaševičius, Rytis Maskeliunas and Ovidijus Grigas; investigation, Robertas Damaševičius, Rytis Maskeliunas and Ovidijus Grigas; resources, Rytis Maskeliunas; writing—original draft preparation, Ovidijus Grigas; writing—review and editing, Rytis Maskeliunas and Robertas Damaševičius; visualization, Ovidijus Grigas; supervision, Rytis Maskeliunas.

Corresponding author

Correspondence to Robertas Damaševičius.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigas, O., Maskeliunas, R. & Damaševičius, R. Early detection of dementia using artificial intelligence and multimodal features with a focus on neuroimaging: A systematic literature review. Health Technol. 14, 201–237 (2024). https://doi.org/10.1007/s12553-024-00823-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12553-024-00823-0

Keywords

Navigation