Skip to main content

Advertisement

Log in

An efficient combination of quadruple biomarkers in binary classification using ensemble machine learning technique for early onset of Alzheimer disease

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

BackgroundAlzheimer’s disease (AD) is a degenerated condition of the brain where memory loss is fully depleted for elderly individual. Efficient machine learning methods are accessible, producing low classification accuracy since single modality features are being evaluated. In this paper, the multimodal approach is developed and execution of comprehensive validation for structural atrophy through Magnetic Resonance Imaging decreases metabolism through Fluorodeoxyglucose Positron Emission Tomography (FDG-PET), and accumulation of amyloid plaques through Pittsburgh compound B (PiB-PET), as well as cognitive assessment for identifying the early onset of AD. It has been stated that additional information from multiple image modalities would ameliorate the classification accuracy while diagnosing early AD. The novel classifier, Adaptive Hyperparameter Tuning Random Forest Ensemble Classifier (HPT-RFE), is proposed for three binary classifications. In this classifier, the tunning of hyperparameters is automated for computing the best features while constructing the optimum size of Random Forest. The advantage of using the classifier is computationally much faster when compared with Support Vector Machine, Naïve Bayes, K-Nearest Neighbour and Artificial Neural Network. Simulation results show that the performance of the Adaptive HPT-RFE classifier has been regarded as best among all binary classifications in the ADNI dataset. For AD versus Normal Control (NC) binary classification, 100% accuracy, sensitivity, and specificity have been achieved, whereas the accuracy of 91% and 100% specificity for NC versus Mild Cognitive Impairment (MCI) classification and 95% accuracy, 100% specificity, 80% sensitivity for AD versus MCI classification are compared with four state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thies W, Bleiler L (2013) 2013 Alzheimer’s disease facts and figures. Alzheimers Dement 9(2):208–245

    Google Scholar 

  2. 2016 Alzheimer's disease facts and figures. (2016). Alzheimer's Dementia, 12(4), 459–509

  3. Alzheimer's Disease. (2010). New England J Med 362(19), 1844–1845

  4. Jack C, Knopman D, Jagust W, Shaw L, Aisen P, Weiner M et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128

    Google Scholar 

  5. Li X, Li T, Andreasen N, Wiberg M, Westman E, Wahlund L (2013) The association between biomarkers in cerebrospinal fluid and structural changes in the brain in patients with Alzheimer’s Disease. J Intern Med 275(4):418–427

    Google Scholar 

  6. Perez-Nievas B, Stein T, Tai H, Dols-Icardo O, Scotton T, Barroeta-Espar I et al (2013) Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology. Brain 136(8):2510–2526

    Google Scholar 

  7. Birch A, Katsouri L, Sastre M (2014) Modulation of inflammation in transgenic models of Alzheimer’s disease. J Neuroinflamm. https://doi.org/10.1186/1742-2094-11-25

    Article  Google Scholar 

  8. Karch C, Goate A (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiat 77(1):43–51

    Google Scholar 

  9. Brayne C (2014) A population perspective on the IWG-2 research diagnostic criteria for Alzheimer’s disease. Lancet Neurol 13(6):532–534

    Google Scholar 

  10. Park S, Kim J, Kim H, Kim T, Kim Y, Lee D et al (2013) Preliminary study for a multicenter study of Alzheimer’s disease cerebrospinal fluid biomarkers. Dementia Neurocognit Disorder 12(1):1

    Google Scholar 

  11. Bandelow S, Clifford A, Wardt V, Hogervorst E, Madden M, Lindesay J, Gale A (2011) P1–139: Accurate non-invasive diagnoses of Alzheimer’s Disease using eye scanning. Alzheimer’s Dementia. https://doi.org/10.1016/j.jalz.2011.05.419

    Article  Google Scholar 

  12. Barthel H, Schroeter M, Hoffmann K, Sabri O (2015) PET/MR in dementia and other neurodegenerative diseases. Semin Nucl Med 45(3):224–233

    Google Scholar 

  13. Kumari R, Pushkar S (2020) Analysis of biomedical image for Alzheimers disease detection. In: Examining Fractal Image Processing and Analysis Advances in Computational Intelligence and Robotics, 224–251

  14. Jadvar H, Colletti P (2014) Competitive advantage of PET/MRI. Eur J Radiol 83(1):84–94

    Google Scholar 

  15. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Långström B (2004) Imaging brain amyloid in Alzheimers disease with Pittsburgh compound-B. Ann Neurol 55(3):306–319

    Google Scholar 

  16. Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800

    Google Scholar 

  17. Braak H, Braak E (1990) Alzheimerʼs disease. J Neuropathol Exp Neurol 49(3):215–224

    Google Scholar 

  18. Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF, Brooks DJ (2006) Amyloid, hypometabolism, and cognition in Alzheimer disease: An [11C] PIB and [18F] FDG PET study. Neurology 68(7):501–508

    Google Scholar 

  19. Bråne G, Gottfries CG (1986) The GBS scale: a new rating scale for dementia syndromes. Nord Psykiatr Tidsskr 40(2):125–134

    Google Scholar 

  20. Morris JC, Ernesto C, Schafer K, Coats M, Leon S, Sano M, Woodbury P (1997) Clinical dementia rating training and reliability in multicenter studies. Neurology 48(6):1508–1510

    Google Scholar 

  21. Mckhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, Phelps CH (2011) The diagnosis of dementia due to Alzheimers disease: recommendations from the National Institute on Aging-Alzheimers Association workgroups on diagnostic guidelines for Alzheimers disease. Alzheimers Dementia 7(3):263–269

    Google Scholar 

  22. Podhorna J, Krahnke T, Shear M, Harrison JE (2016) Alzheimer’s disease assessment scale-cognitive subscale variants in mild cognitive impairment and mild Alzheimer’s Disease: change over time and the effect of enrichment strategies. Alzheimers Res Therapy. https://doi.org/10.1186/s13195-016-0170-5

    Article  Google Scholar 

  23. Stern Y (2012) Cognitive reserve in ageing and Alzheimers disease. Lancet Neurol 11(11):1006–1012

    Google Scholar 

  24. Morris JC, Selkoe DJ (2011) Recommendations for the incorporation of biomarkers into Alzheimer clinical trials: an overview. Neurobiol Aging 32:S1

    Google Scholar 

  25. Grimmer T, Riemenschneider M, Förstl H, Henriksen G, Klunk WE, Mathis CA, Drzezga A (2009) Beta amyloid in Alzheimers disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biol Psychiat 65(11):927–934

    Google Scholar 

  26. Drzezga A, Barthel H, Minoshima S, Sabri O (2014) Potential clinical applications of PET/MR imaging in neurodegenerative diseases. J Nuclear Med 55(Supplement 2):47S-55S. https://doi.org/10.2967/jnumed.113.129254

    Article  Google Scholar 

  27. Zhang XY, Yang ZL, Lu GM, Yang GF, Zhang LJ (2017) PET/MR imaging: new frontier in Alzheimers disease and other dementias. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2017.00343

    Article  Google Scholar 

  28. http://adni.loni.usc.edu/

  29. http://www.adni-info.org

  30. http://adni.loni.usc.edu/methods/mri-tool/mri-analysis

  31. http://adni.loni.usc.edu/pet-analysis-method/pet-analysis

  32. http://adni.loni.usc.edu/pibpet-analysis-method/pibpet-analysis

  33. Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781

    Google Scholar 

  34. https://www.bitmesra.ac.in/Visit_Department_Page?cid=1&deptid=70&pid=112

  35. Ashburner J, Friston KJ (2001) Why voxel-based morphometry should be used. Neuroimage 14(6):1238–1243

    Google Scholar 

  36. Whitwell JL (2009) Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J Neurosci 29(31):9661–9664

    Google Scholar 

  37. Schmitter D, Roche A, Maréchal B, Ribes D, Abdulkadir A, Bach-Cuadra M, Krueger G (2015) An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimers disease. NeuroImage Clin 7:7–17

    Google Scholar 

  38. http://surfer.nmr.mgh.harvard.edu

  39. Fischl B, Salat DH, Kouwe AJ, Makris N, Ségonne F, Quinn BT, Dale AM (2004) Sequence-independent segmentation of magnetic resonance images. NeuroImage 23:S69

    Google Scholar 

  40. Lancaster J, Kochunov P, Nickerson D, Fox P (2000) Stand-alone Java-based version of the Talairach daemon database system. NeuroImage 11(5):S923

    Google Scholar 

  41. Minoshima S, Frey KA, Foster NL, Kuhl DE (1995) Preserved pontine glucose metabolism in Alzheimer disease. J Comput Assist Tomogr 19(4):541–547

    Google Scholar 

  42. Erlandsson K, Irène Buvat P, Pretorius H, Thomas BA, Hutton BF (2012) A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol 57(21):R119–R159. https://doi.org/10.1088/0031-9155/57/21/R119

    Article  Google Scholar 

  43. Thomas BA, Cuplov V, Bousse A, Mendes A, Thielemans K, Hutton BF, Erlandsson K (2016) PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography. Phys Med Biol 61(22):7975–7993

    Google Scholar 

  44. Fischl B, Sereno MI, Tootell RB, Dale AM (1999) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8(4):272–284

    Google Scholar 

  45. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  46. Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 63(1):3–42

    MATH  Google Scholar 

  47. Lebedev A, Westman E, Westen GV, Kramberger M, Lundervold A, Aarsland D, Simmons A (2014) Random forest ensembles for detection and prediction of Alzheimers disease with a good between-cohort robustness. NeuroImage Clin 6:115–125

    Google Scholar 

  48. Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S, Habert M, Colliot O (2011) Automatic classification of patients with Alzheimers disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2):766–781

    Google Scholar 

  49. Seref B, Bostanci E (2019) Performance comparison of naïve bayes and complement naïve bayes algorithms. In: 2019 6th international conference on electrical and electronics engineering (ICEEE)

  50. Dinu A.J (2019) Early detection of alzheimers disease using predictive K-NN instance based approach and T-Test method. Int J Adv Trends Comput Sci Eng 8:29–37

    Google Scholar 

  51. Bersimis FG, Varlamis I (2019) Use of health-related indices and classification methods in medical data. Classif Tech Med Image Anal Comput Aided Diagnos 2019:31–66

    Google Scholar 

  52. Gupta Y, Lee KH, Choi KY, Lee JJ, Kim BC, Kwon GR (2019) Early diagnosis of Alzheimer’s disease using combined features from Voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images. Plos One 14(10):e0222446

    Google Scholar 

  53. Beheshti I, Demirel H (2016) Feature-ranking-based Alzheimer’s disease classification from structural MRI. Magn Reson Imaging 34(3):252–263

    Google Scholar 

  54. Jha D, Alam S, Pyun J, Lee KH, Kwon G (2018) Alzheimers disease detection using extreme learning machine, complex dual tree wavelet principal coefficients and linear discriminant analysis. J Med Imaging Health Inf 8(5):881–890

    Google Scholar 

  55. Gupta Y, Lee KH, Choi KY, Lee JJ, Kim BC, Kwon GR (2019) Early diagnosis of Alzheimer’s Disease using combined features from voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images. Plos One 14(10):e0222446

    Google Scholar 

  56. Mehmood A, Yang S, Feng Z, Wang M, Ahmad AS, Khan R, Yaqub M (2021) A transfer learning approach for early diagnosis of alzheimer’s disease on MRI images. Neuroscience 460:43–52

    Google Scholar 

  57. Furst AJ, Agarwal N, Mormino EC (2011) Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology 77(23):2034–2042

    Google Scholar 

  58. Martino-IST IT, Navarra ES (2018) Machine learning based analysis of FDG-PET image data for the diagnosis of neurodegenerative diseases. Appl Intell Syst Proc Int APPIS Conf 310:280

    Google Scholar 

  59. Gupta Y, Lama RK, Kwon G (2019) Prediction and classification of Alzheimer’s disease based on combined features from apolipoprotein-E genotype, cerebrospinal fluid, MR, and FDG-PET imaging biomarkers. Front Comput Neurosci. https://doi.org/10.3389/fncom.2019.00072/full

    Article  Google Scholar 

  60. Lesman-Segev OH, La Joie R, Iaccarino L, Lobach I, Rosen HJ, Seo SW, Janabi M et al (2021) Diagnostic accuracy of amyloid versus 18f-fluorodeoxyglucose positron emission tomography in autopsy-confirmed dementia. Ann Neurol 89(2):389–401

    Google Scholar 

  61. Li Y, Rinne JO, Mosconi L, Pirraglia E, Rusinek H, Desanti S, Leon MJ (2008) Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35(12):2169–2181

    Google Scholar 

  62. Giacomucci G, Mazzeo S, Bagnoli S, Casini M, Padiglioni S, Polito C, Bessi V (2021) Matching clinical diagnosis and amyloid biomarkers in Alzheimer’s disease and frontotemporal dementia. J Personal Med 11(1):47

    Google Scholar 

  63. Salvatore C, Cerasa A, Castiglioni I (2018) MRI characterizes the progressive course of ad and predicts conversion to Alzheimer’s dementia 24 months before probable diagnosis. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2018.00135

    Article  Google Scholar 

  64. Liu K, Chen K, Yao L, Guo X (2017) Prediction of mild cognitive impairment conversion using a combination of independent component analysis and the cox model. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2017.00033

    Article  Google Scholar 

  65. Zhu X, Suk H, Wang L, Lee S, Shen D (2017) A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med Image Anal 38:205–214

    Google Scholar 

  66. Lu D, Popuri K, Ding GW, Balachandar R, Beg MF (2018) Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s Disease using structural MR and FDG-PET images. Sci Rep. https://doi.org/10.1038/s41598-018-22871-z

    Article  Google Scholar 

  67. Li W, Shen Y, Tian D, Bu X, Zeng F, Liu Y, Wang Y (2019) Brain Amyloid-β deposition and blood biomarkers in patients with clinically diagnosed Alzheimer’s disease. J Alzheimers Dis 69(1):169–178

    Google Scholar 

  68. Vandenberghe R, Adamczuk K, Dupont P, Laere KV, Chételat G (2013) Amyloid PET in clinical practice: its place in the multidimensional space of Alzheimers disease. NeuroImage Clin 2:497–511

    Google Scholar 

  69. Lowe VJ, Kemp BJ, Jack CR, Senjem M, Weigand S, Shiung M, Petersen RC (2009) Comparison of 18F-FDG and PiB PET in Cognitive Impairment. J Nucl Med 50(6):878–886

    Google Scholar 

  70. Zhang D, Wang Y, Zhou L, Yuan H, Shen D, Initiative ADN (2011) Multimodal classification of Alzheimer’s Disease and mild cognitive impairment. Neuroimage 55(3):856–867

    Google Scholar 

  71. Rallabandi VS, Tulpule K, Gattu M (2020) Automatic classification of cognitively normal, mild cognitive impairment and Alzheimers disease using structural MRI analysis. Inf Med Unlocked 18:100305

    Google Scholar 

  72. Kitajima K, Abe K, Takeda M, Yoshikawa H, Ohigashi M, Osugi K, Yamakado K (2021) Clinical impact of 11C-Pittsburgh compound-B positron emission tomography in addition to magnetic resonance imaging and single-photon emission computed tomography on diagnosis of mild cognitive impairment to Alzheimers disease. Medicine 100(3):e23969

    Google Scholar 

  73. Martínez G, Vernooij RW, Padilla PF, Zamora J, Flicker L, Cosp XB (2017) 18F PET with flutemetamol for the early diagnosis of Alzheimers disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD012884/full

    Article  Google Scholar 

  74. Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, Franc BL (2019) A deep learning model to predict a diagnosis of alzheimer disease by using 18F-FDG PET of the brain. Radiology 290(2):456–464

    Google Scholar 

  75. Zhang S, Han D, Tan X, Feng J, Guo Y, Ding Y (2012) Diagnostic accuracy of 18F-FDG and 11C-PIB-PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment. Int J Clin Pract 66(2):185–198

    Google Scholar 

  76. Ma Y, Zhang S, Li J, Zheng D, Guo Y, Feng J, Ren W (2014) Predictive accuracy of amyloid imaging for progression from mild cognitive impairment to alzheimer disease with different lengths of follow-up. Medicine 93(27):e150

    Google Scholar 

  77. Peng J, Zhu X, Wang Y, An L, Shen D (2019) Structured sparsity regularized multiple kernel learning for Alzheimer’s disease diagnosis. Pattern Recogn 88:370–382

    Google Scholar 

  78. Suk H-I, Lee S-W, Shen D (2015) Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Funct 220(2):841–859

    Google Scholar 

  79. Zheng N, Qiu H, Wang Z, Liu W, Zhang H, Li Y (2018) A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s Disease. Neurocomputing 320:195–202

    Google Scholar 

  80. Kim J, Lee B (2018) Identification of Alzheimers disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine. Hum Brain Mapp 39(9):3728–3741

    Google Scholar 

  81. Chételat G, Arbizu J, Barthel H, Garibotto V, Law I, Morbelli S, Drzezga A (2020) Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimers disease and other dementias. Lancet Neurol 19(11):951–962

    Google Scholar 

  82. Suppiah S, Ching SM, Mfammed AJ, Mrad SV (2018) The role of PET/CT amyloid imaging compared with Tc99m-HMPAO SPECT imaging for diagnosing Alzheimer’s. Med J Malaysia 73(3):147

    Google Scholar 

  83. Zhang D, Shen D (2012) Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS ONE 7(3):e33182

    Google Scholar 

  84. Suk H, Lee S, Shen D (2014) Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101:569–582

    Google Scholar 

  85. Wang P, Chen K, Yao L, Hu B, Wu X, Zhang J, Guo X (2016) Multimodal classification of mild cognitive impairment based on partial least squares. J Alzheimers Dis 54(1):359–371

    Google Scholar 

  86. Devanand D, Mikhno A, Pelton GH, Cuasay K, Pradhaban G, Kumar JD, Parsey RV (2010) Pittsburgh compound B (11C-PIB) and fluorodeoxyglucose (18 F-FDG) PET in patients with alzheimer disease, mild cognitive impairment, and healthy controls. J Geriatr Psychiatry Neurol 23(3):185–198

    Google Scholar 

  87. Yang Z, Liu Z (2020) The risk prediction of Alzheimer’s Disease based on the deep learning model of brain 18F-FDG positron emission tomography. Saudi J Biol Sci 27(2):659–665

    Google Scholar 

  88. Ortiz A, Munilla J, Górriz JM, Ramírez J (2016) Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. Int J Neural Syst 26(07):1650025

    Google Scholar 

  89. Vandenberghe R, Nelissen N, Salmon E, Ivanoiu A, Hasselbalch S, Andersen A, Dupont P (2013) Binary classification of 18F-flutemetamol PET using machine learning: comparison with visual reads and structural MRI. Neuroimage 64:517–525

    Google Scholar 

  90. Sivapriya TR, Kamal AR, Thangaiah PR (2015) Ensemble merit merge feature selection for enhanced multinomial classification in Alzheimer’s Dementia. Comput Math Methods Med 2015:1–11

    Google Scholar 

  91. Cheng Bo, Liu M, Zhang D, Munsell BC, Shen D (2015) Domain transfer learning for MCI conversion prediction. IEEE Trans Biomed Eng 62(7):1805–1817

    Google Scholar 

  92. Mosconi L, McHugh PF (2011) FDG-and amyloid-PET in Alzheimer’s Disease: Is the whole greater than the sum of the parts. Q J Nucl Med Mol Imaging 55(3):250

    Google Scholar 

  93. Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N, Jagust WJ (2011) Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology 77(23):2034–2042

    Google Scholar 

  94. Tong T, Gray K, Gao Q, Chen L, Rueckert D (2017) Multi-modal classification of Alzheimer‘s disease using nonlinear graph fusion. Pattern Recognit 63:171–181. https://doi.org/10.1016/j.patcog.2016.10.009

    Article  Google Scholar 

  95. Young J, Modat M, Cardoso MJ, Mendelson A, Cash D, Ourselin S (2013) Accurate multimodal probabilistic prediction of conversion to Alzheimer’s Disease in patients with mild cognitive impairment. NeuroImage Clin 2:735–745. https://doi.org/10.1016/j.nicl.2013.05.004

    Article  Google Scholar 

  96. Mora Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J (2015) Machine learning framework for early MRI-based Alzheimers conversion prediction in MCI subjects. Neuroimage 104:398–412

    Google Scholar 

  97. Teng L, Li Y, Zhao Y, Hu T, Zhang Z, Yao Z, Hu B (2020) Predicting MCI progression with FDG-PET and cognitive scores: a longitudinal study. BMC Neurol. https://doi.org/10.1186/s12883-020-01728-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Kumari.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest related to this review. This article does not contain any studies with human or animal subjects performed by the any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, R., Nigam, A. & Pushkar, S. An efficient combination of quadruple biomarkers in binary classification using ensemble machine learning technique for early onset of Alzheimer disease. Neural Comput & Applic 34, 11865–11884 (2022). https://doi.org/10.1007/s00521-022-07076-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07076-w

Keywords

Navigation