Skip to main content
Log in

Biocontrol of the toxigenic plant pathogen Fusarium culmorum by soil fauna in an agroecosystem

  • Original Article
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

In 2011 and 2013, a field experiment was conducted in a winter wheat field at Adenstedt (northern Germany) to investigate biocontrol and interaction effects of important members of the soil food web (Lumbricus terrestris, Annelida; Folsomia candida, Collembola and Aphelenchoides saprophilus, Nematoda) on the phytopathogenic fungus Fusarium culmorum in wheat straw. Therefore, soil fauna was introduced in mesocosms in defined numbers and combinations and exposed to either Fusarium-infected or non-infected wheat straw. L. terrestris was introduced in all faunal treatments and combined either with F. candida or A. saprophilus or both. Mesocosms filled with a Luvisol soil, a cover of different types of wheat straw and respective combinations of faunal species were established outdoors in the topsoil of a winter wheat field after harvest of the crop. After a time span of 4 and 8 weeks, the degree of wheat straw coverage of mesocosms was quantified to assess its attractiveness for the soil fauna. The content of Fusarium biomass in residual wheat straw and soil was determined using a double-antibody sandwich (DAS)-ELISA method. In both experimental years, the infected wheat straw was incorporated more efficiently into the soil than the non-infected control straw due to the presence of L. terrestris in all faunal treatments than the non-infected control straw. In addition, Fusarium biomass was reduced significantly in all treatments after 4 weeks (2011: 95–99%; 2013:15–54%), whereupon the decline of fungal biomass was higher in faunal treatments than in non-faunal treatments and differed significantly from them. In 2011, Fusarium biomass of the faunal treatments was below the quantification limit after 8 weeks. In 2013, a decline of Fusarium biomass was observed, but the highest content of Fusarium biomass was still found in the non-faunal treatments after 8 weeks. In the soil of all treatments, Fusarium biomass was below the quantification limit. The earthworm species L. terrestris revealed a considerable potential as an effective biocontrol agent contributing to a sustainable control of a Fusarium plant pathogen in wheat straw, thus reducing the infection risk for specific plant diseases in arable fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R Package Version 1:1–5

    Google Scholar 

  • Bertrand M, Blouin M, Barot S, Charlier A, Marchand D, Roger-Estrade J (2015) Biocontrol of eyespot disease on two winter wheat cultivars by an anecic earthworm (Lumbricus terrestris). Appl Soil Ecol 96:33–41

    Article  Google Scholar 

  • Bonkowski M, Griffiths BS, Ritz K (2000) Food preferences of earthworms for soil fungi. Pedobiologia 44:666–676

    Article  Google Scholar 

  • Brown GG (1995) How do earthworms affect microfloral and faunal community diversity? Plant Soil 170:209–231. doi:10.1007/BF02183068

    Article  CAS  Google Scholar 

  • Cooke A (1983) The effects of fungi on food selection by Lumbricus terrestris L. In: Satchell JE (ed) Earthworm ecology: from Darwin to Vermiculture. Chapman and Hall, London, pp 365–373

    Chapter  Google Scholar 

  • Curtui V, Brockmeyer A, Dietrich R, Kappenstein O, Klaffke H, Lepschy J, Märtlbauer E, Schneider E, Seidler C, Thielert G, Usleber E, Weber R, Wolff J (2005) Deoxynivalenol in Lebensmitteln. Mycotox Res 21:83–88

  • Edwards CA (1983) Earthworm ecology in cultivated soils. In: Satchell JE (ed) Earthworm ecology: from Darwin to vermiculture. Chapman and Hall, London, pp 123–137

    Chapter  Google Scholar 

  • Edwards CA, Bohlen P, Linden DR, Subler S (1995) Earthworms in Agrosystems. In: Hendrix PF (ed) Earthworm ecology and biogeography in North America. Lewis Publishers, Boca Raton, pp 185–213

    Google Scholar 

  • EIP-AGRI Focus Group (2015) IPM practices for soil-borne diseases. Final report

  • Ernst G, Emmerling C (2009) Impact of five different tillage systems on soil organic carbon content and the density, biomass, and community composition of earthworms after a ten year period. Eur J Soil Biol 45:247–251

    Article  CAS  Google Scholar 

  • Freckman DW, Caswell EP (1985) The ecology of nematodes in agroecosytems. Annu rev Phytopathol 23:275–296. doi:10.1146/annurev.py.23.090185.001423

    Article  Google Scholar 

  • Friberg H, Lagerlöf J, Rämert B (2005) Influence of soil fauna and fungal plant pathogens in agricultural and horticultural systems. Biocontrol Sci Tech 15:641–658. doi:10.1080/09583150500086979

    Article  Google Scholar 

  • Grubert D, Butenschoen O, Maraun M, Scheu S (2016) Understanding earthworm—Collembola interactions and their importance for ecosystem processes needs consideration of species identity. Eur J Soil Biol 77:60–67. doi:10.1016/j.ejsobi.2016.10.001

    Article  Google Scholar 

  • Gupta MC (1986) Biological control of Fusarium moniliforme Sheldon and Pythium butleri Subramaniam by Aphelenchus avenae Bastian in chitin and cellulose-amended soils. Soil Biol Biochem 18:327–329. doi:10.1016/0038-0717(86)90069-6

    Article  Google Scholar 

  • Heemsbergen DA, Berg MP, Loreau M, van Hal JR, Faber JH, Verhoef HA (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306:1019–1020

    Article  CAS  PubMed  Google Scholar 

  • Hobbs PR (2007) Conservation agriculture: what is it and why is it important for future sustainable food production? J Agr Sci 145:127–137

    Article  Google Scholar 

  • Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103:1–25

    Article  Google Scholar 

  • Joschko M, Rogasik H (2002) Mehr Tiefgräber bei Pflugverzicht. Landwirtschaft Ohne Pflug 4-2002:19–21

    Google Scholar 

  • Kassam A, Friedrich T, Shaxson F, Pretty J (2009) The spread of conservation agriculture: justification, sustainability and uptake. Int J Agr Sustain 7:292–320. doi:10.3763/ijas.2009.0477

    Article  Google Scholar 

  • Kauschke E, Komiyama K, Moro I, Eue I, König S, Cooper EL (2001) Evidence for perforin-like activity associated with earthworm leukocytes. Zoology 104:13–24

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept and review. Soil Biol Biochem 83:184–199. doi:10.1016/j.soilbio.2015.01.025

    Article  CAS  Google Scholar 

  • Lartey RT, Curl EA, Peterson CM (1994) Interactions of mycophagous Collembola and biological control fungi in the suppression of Rhizoctonia solani. Soil Biol Biochem 26:81–88. doi:10.1016/0038-0717(94)90198-8

    Article  Google Scholar 

  • Leplat J, Friberg H, Abid M, Steinberg C (2013) Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agron Sustain Dev 33:97–111. doi:10.1007/s13593-012-0098-5

    Article  Google Scholar 

  • MacFadyen A (1961) Improved funnel-type extractors for soil arthropods. J Anim Ecol 30:171–184. doi:10.2307/2120

    Article  Google Scholar 

  • Moody SA, Briones TG, Dighton J (1995) Selective consumption of decomposing wheat straw by earthworms. Soil Biol Biochem 27:1209–1213. doi:10.1016/0038-0717(95)00024-9

    Article  CAS  Google Scholar 

  • Okada H (2006) Ecology of fungivorous nematodes and their use for suppression of plant diseases. Bulletin of the National Agricultural Research Centre for Tohoku 105:155–197 published in Japanese with English summary

    Google Scholar 

  • Oldenburg E, Kramer S, Schrader S, Weinert J (2008) Impact of the earthworm Lumbricus terrestris on the degradation of Fusarium-infected and deoxynivalenol-contaminated wheat straw. Soil Biol Biochem 40:3049–3053. doi:10.1016/j.soilbio.2008.09.004

    Article  CAS  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  • Pereyra SA, Dill-Macky R (2008) Colonization of the residues of diverse plant species by Gibberella zeae and their contribution to Fusarium head blight inoculum. Plant Dis 92:800–807. doi:10.1094/PDIS-92-5-0800

    Article  Google Scholar 

  • Pereyra SA, Dill-Macky R, Sims AL (2004) Survival and inoculum production of Gibberella zeae in wheat residue. Plant Dis 88:724–730. doi:10.1094/PDIS.2004.88.7.724

    Article  Google Scholar 

  • Pertot I, Alabouvette C, Hinarejos E, Franca S (2015) Mini paper—the use of microbial biocontrol agents against soil-borne diseases. EIP-AGRI Focus Group Soil-borne diseases. http://ec.europa.eu/eip/agriculture/sites/agri-eip/files/8_eip_sbd_mp_biocontrol_final.pdf (Accessed 10 May 2017)

  • Pestka JJ (2007) Deoxynivalenol: Toxicity, mechanisms and animal health risks. Anim Feed Sci Technol 137(3-4):283–298

  • Pfeffer SP, Filser J (2010) Attraction to prey and prey-associated odours by the predatory mite Hypoaspis aculeifer in a soil experimental system. Soil Biol Biochem 42:1355–1357. doi:10.1016/j.soilbio.2010.03.018

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2015) nlme: linear and nonlinear mixed effects models. R Package Version 3:1–120

  • Plavsin I, Velki M, Ecimovic S, Vrandecic K, Cosic J (2017) Inhibitory effect of earthworm coelomic fluid on growth of the plant parasitic fungus Fusarium oxysporum. Eur J Soil Biol 78:1–6. doi:10.1016/j.ejsobi.2016.11.004

    Article  Google Scholar 

  • R Development Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

  • Roessner J, Urland K (1983) Mycophage Nematoden der Gattung Aphelenchoides an der Halmbasis von Getreidepflanzen und ihre Wirkung gegen Fusskrankheitserreger von Getreide. Nematologica 29:454–462

    Article  Google Scholar 

  • Ruess L, Lussenhop J (2005) Trophic interactions of fungi and animals. In: Dighton J, Oudemans P, White J (eds) The fungal community: its organization and role in the ecosystem. CRC, Boca Raton, pp 581–598

    Chapter  Google Scholar 

  • Ruess L, Häggblom MM, Zapata EJG, Dighton J (2002) Fatty acids of fungi and nematodes—possible biomarkers in the soil food chain? Soil Biol Biochem 34:745–756. doi:10.1016/S0038-0717(01)00231-0

    Article  CAS  Google Scholar 

  • Sabatini MA, Innocenti G (2000) Functional relationships between Collembola and plant pathogenic fungi of agricultural soils. Pedobiologia 44:467–478. doi:10.1078/S0031-4056(04)70064-5

    Article  Google Scholar 

  • Schrader S, Kramer S, Oldenburg E, Weinert J (2009) Uptake of deoxynivalenol by earthworms from Fusarium-infected wheat straw. Mycotox res 25:53–58. doi:10.1007/s12550-009-0007-1

    Article  CAS  Google Scholar 

  • Shiraishi H, Enami Y, Okano S (2003) Folsomia hidakana (Collembola) prevents damping-off disease in cabbage and Chinese cabbage by Rhizoctonia solani. Pedobiologia 47:33–38. doi:10.1078/0031-4056-00167

    Article  Google Scholar 

  • van Capelle C, Schrader S, Brunotte J (2012) Tillage-induced changes in the functional diversity of soil biota—a review with a focus on German data. Eur J Soil Biol 50:165–181. doi:10.1016/j.ejsobi.2012.02.005

    Article  Google Scholar 

  • van Vliet PCJ, Beare MH, Coleman DC, Hendrix PF (2004) Effects of enchytraeids (Annelida: Oligochaeta) on soil carbon and nitrogen dynamics in laboratory incubations. Appl Soil Ecol 25(2):147–160

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, Fourth edn. Springer, New York

    Book  Google Scholar 

  • Wagacha JM, Muthomi JW (2007) Fusarium culmorum: infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Prot 26:877–885. doi:10.1016/j.cropro.2006.09.003

    Article  CAS  Google Scholar 

  • Whalen JK, Sampedro L (2010) Soil ecology and management. CABI Publishers, Wallingford

    Google Scholar 

  • Wolfarth F, Schrader S, Oldenburg E, Weinert J, Brunotte J (2011) Earthworms promote the reduction of Fusarium biomass and deoxynivalenol content in wheat straw under field conditions. Soil Biol Biochem 43:1858–1865. doi:10.1016/j.soilbio.2011.05.002

    Article  CAS  Google Scholar 

  • Wolfarth F, Schrader S, Oldenburg E, Weinert J (2013) Nematode-collembolan-interaction promotes the degradation of Fusarium biomass and deoxynivalenol according to soil texture. Soil Biol Biochem 57:903–910. doi:10.1016/j.soilbio.2012.11.001

    Article  CAS  Google Scholar 

  • Wolfarth F, Wedekind S, Schrader S, Oldenburg E, Brunotte J (2015) Regulation of the mycotoxin deoxynivalenol by Folsomia candida (Collembola) and Aphelenchoides saprophilus (Nematoda) in an on-farm experiment. Pedobiologia 58:41–47. doi:10.1016/j.pedobi.2015.01.003

    Article  Google Scholar 

  • Wolfarth F, Schrader S, Oldenburg E, Brunotte J (2016) Mycotoxin contamination and its regulation by the earthworm species Lumbricus terrestris in presence of other soil fauna in an agroecosystem. Plant Soil. doi:10.1007/s11104-015-2772-2

  • Wurst S, De Deyn GB, Orwin K (2012) Soil biodiversity and functions. In: Wall DH et al (eds) Soil ecology and ecosystem services. Oxford University Press, Oxford, pp 28–44

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Liliane Ruess and Michael Ackermann (HU Berlin) for providing the mass cultures of A. saprophilus and their valuable advice for the breeding procedure. Furthermore, the excellent technical assistance of Sabine El Sayed, Berthold Ortmeier, Evelin Schummer, Anke Führer, Sina Wedekind, Marco Hornbostel, Svenja Wiedenroth, Annika Rickmann and Sarah Havertz is gratefully acknowledged. For providing the climate data of the field site, we thank Jan Bug from the Institute of Physical Geography and Landscape Ecology, University of Hannover. The study was supported by the German Federal Environmental Foundation, Deutsche Bundesstiftung Umwelt (DBU), by providing a personal grant to Friederike Meyer-Wolfarth. Furthermore, the financial support of the Brigitte und Wolfram Gedek-Stiftung is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friederike Meyer-Wolfarth.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer-Wolfarth, F., Schrader, S., Oldenburg, E. et al. Biocontrol of the toxigenic plant pathogen Fusarium culmorum by soil fauna in an agroecosystem. Mycotoxin Res 33, 237–244 (2017). https://doi.org/10.1007/s12550-017-0282-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-017-0282-1

Keywords

Navigation