Skip to main content
Log in

Numerical Study of Temperature Distribution Control in Precision Glass Molding Furnace

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In a precision glass molding process, glass preform is compressed at a high temperature well above its transition temperature and the temperature distribution inside plays an important role in determining the quality of final products. In this research, a 2D axisymmetric numerical heat transfer model, integrated with an innovative PID control subroutine, was employed for simulating the temperature control process and obtaining transient temperature distribution in the glass preform. Feasibility of this method was validated by experiments with good agreements. Finally, influence of air gap between glass preform and upper mold as well as temperature control mode were investigated. The results showed that temperature difference of the molds had a severer influence on the temperature distribution of glass preform with the decrease of air gap. In addition, a two-point control strategy was demonstrated as a valid method to improve the temperature uniformity in the glass preform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yi, A. Y. and Jain, A., “Compression Molding of Aspherical Glass Lenses-A Combined Experimental and Numerical Analysis,” Journal of the American Ceramic Society, vol. 88, no. 3, pp. 579–586, 2005.

    Article  Google Scholar 

  2. Ju, J., Lim, S., Seok, J., and Kim, S.-m., “A Method to Fabricate Low-Cost and Large Area Vitreous Carbon Mold for Glass Molded Microstructures,” International Journal of Precision Engineering and Manufacturing, vol. 16, no. 2, pp. 287–291, 2015.

    Article  Google Scholar 

  3. Zhang, L., Liu, G., Zhao, X., Dambon, O., Klocke, F., and Yi, A., “Precision Molding of Optics: A Review of Its Development and Applications,” Proc. of SPIE, Vol. 9949, Paper No. 994906, 2016.

    Google Scholar 

  4. Dambon, O., Wang, F., Klocke, F., Pongs, G., Bresseler, B., et al., “Efficient Mold Manufacturing for Precision Glass Molding,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 27, no. 3, pp. 1445–1449, 2009.

    Article  Google Scholar 

  5. Viskanta, R. and Lim, J. M., “Theoretical Investigation of Heat Transfer in Glass Forming,” Journal of the American Ceramic Society, vol. 84, no. 10, pp. 2296–2302, 2001.

    Article  Google Scholar 

  6. Höhne, D., Pitschel, B., Merkwitz, M., and Lobig, R., “Measurement and Mathematical Modelling of the Heat Transfer in the Glass Forming Process, in Consideration of the Heat Transfer Coefficients and Radiation Influences,” Glass Science and Technology, vol. 76, no. 6, pp. 309–317, 2003.

    Google Scholar 

  7. Choi, J.-H., Ha, D.-S., Kim, J.-B., and Grandhi, R. V., “Inverse Design of Glass Forming Process Simulation Using an Optimization Technique and Distributed Computing,” Journal of Materials Processing Technology, vol. 148, no. 3, pp. 342–352, 2004.

    Article  Google Scholar 

  8. Chen, Y., Allen, Y. Y., Su, L., Klocke, F., and Pongs, G., “Numerical Simulation and Experimental Study of Residual Stresses in Compression Molding of Precision Glass Optical Components,” Journal of Manufacturing Science and Engineering, vol. 130, no. 5, Paper No. 051012, 2008.

    Google Scholar 

  9. Yan, J., Zhou, T., Masuda, J., and Kuriyagawa, T., “Modeling High-Temperature Glass Molding Process by Coupling Heat Transfer and Viscous Deformation Analysis,” Precision Engineering, vol. 33, no. 2, pp. 150–159, 2009.

    Article  Google Scholar 

  10. Ostrouchov, C., Mosaddegh, P., and Musgraves, J., “A Combined Numerical and Experimental Approach to Measuring Gap Conductance for Precision Glass Molding,” Proc. of Proceeding of Materials Science and Technology Conference and Exhibition, pp. 1729–1736, 2011.

    Google Scholar 

  11. Sarhadi, A., Hattel, J. H., Hansen, H. N., Tutum, C. C., Lorenzen, L., and Skovgaard, P. M., “Thermal Modelling of the Multi-Stage Heating System with Variable Boundary Conditions in the Wafer Based Precision Glass Moulding Process,” Journal of Materials Processing Technology, vol. 212, no. 8, pp. 1771–1779, 2012.

    Article  Google Scholar 

  12. Zhou, J., Li, M., Hu, Y., Shi, T., Ji, Y., and Shen, L., “Numerical Evaluation on the Curve Deviation of the Molded Glass Lens,” Journal of Manufacturing Science and Engineering, vol. 136, no. 5, Paper No. 051004, 2014.

    Google Scholar 

  13. Dora Pallicity, T., Ramesh, K., Mahajan, P., and Vengadesan, S., “Numerical Modeling of Cooling Stage of Glass Molding Process Assisted by CFD and Measurement of Residual Birefringence,” Journal of the American Ceramic Society, vol. 99, no. 2, pp. 470–483, 2016.

    Article  Google Scholar 

  14. ANSYS, Inc., “ANSYS FLUENT Theory Guide,” Vol. 14.0, 2011.

  15. Ogata, K. and Yang, Y., “Modern Control Engineering,” Englewood Cliffs, NJ: Prentice Hall, 2001

    Google Scholar 

  16. Dorcheh, A. S. and Abbasi, M., “Silica Aerogel; Synthesis, Properties and Characterization,” Journal of Materials Processing Technology, vol. 199, no. 1, pp. 10–26, 2008.

    Article  Google Scholar 

  17. Joo, S.-M., Bang, H.-S., Bang, H.-S., and Park, K.-S., “Numerical Investigation on Welding Residual Stress and Out-of-Plane Displacement during the Heat Sink Welding Process of Thin Stainless Steel Sheets,” International Journal of Precision Engineering and Manufacturing, vol. 17, no. 1, pp. 65–72, 2016.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianguan Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Shen, L., Zhou, J. et al. Numerical Study of Temperature Distribution Control in Precision Glass Molding Furnace. Int. J. Precis. Eng. Manuf. 19, 829–835 (2018). https://doi.org/10.1007/s12541-018-0099-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-018-0099-7

Keywords

Navigation